R !

- NASA Contractor Report 187630

ICASE INTERIM REPORT 19

HH

PROCEEDINGS FOR THE ICASE WORKSHOP ON HETEROGENEOQUS
BOUNDARY CONDITIONS

A. Louise Perkins
Jeffrey S. Scroggs

NASA Contract No. NAS1-18605
August 1991

(NASA-CR-187630) PROCEEDINGS FOR THC ICASE N92-11728

WORK SHOP ON HETEROGENEOUS 30UMDARY —-THRU-~-

CONDITIONS Final Report (ICASE) 79 p N92-11735
CSCL 12A Unclas

G3/64 0046600

[ -

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hdmpton Vlrglma 23665

=== Operated © Uperatea by the Universities SpdceResearch Association

Tasen . - ——— . o National l\eronauhcq and

Space Admmustrahon

_ Langley Research Center
Hampton, Virginia 23665-5225







\\L

ICASE INTERIM REPORTS

ICASE has introduced a new report series to be called ICASE Interim Reports.
The series will complement the more familiar blue ICASE reports that have been
distributed for many ycars. The blue reports are intended as preprints of
research that has been submitted for publication in cither referced journals or
conference proceedings. In general, the green Interim Report will not be submit-
tcd for publication, at least not in its printed form. 1t will be used for research
that has reached a certain level of maturity but needs additional refinement, for
technical reviews or position statements, for bibliographics, and for computer
software. The Interim Reports will reccive the same distribution as the ICASE
Reports. They will be available upon request in the future, and they may be
referenced in other publications.

Robert G. Voigt
Director



n

Rl

T



o7

PROCEEDINGS FOR THE ICASE WORKSHOP
ON HETEROGENEOUS BOUNDARY CONDITIONS*

A. Louise Perkins

Massachusctts Institute of Technology
and

Jeffrey S. Scroggs
North Carolina State University

ABSTRACT

Domain Decomposition is a complex problem with many interesting aspects. The choice
of decomposition can be made based on many different criteria, and the choice of interface
of internal boundary conditions are numecrous. Fven more interesting from a modeling
perspective is that the various regions under study may have different dynamical balances,
indicating that different physical processes are dominating the flow in those regions. It may
be desirable to use diflerent numerical approximations in the regions where the physical
processes are dommat('d by different l..lances.
ing the need to more clearly deﬁ_ne the nature of these complcx ‘problems, sponsored this
workshop on Heterogeneous Boundary Conditions at the NASA Langley Research Center
in Hampton, Virginia. This proceedings is an informal collection of the presentations and
discussion groups. It also includes a bibliography that contains many of the references that
discuss related topics.

The proceedings begins with summaries of the discussion groups. Then papers describing
the talks are presented. Lastly, the bibliography is included, and an index by subject is

provided.

*This workshop was sponsored by the Institute for Computer Applications in Science and Engineering
(ICASE) at the National Aeronautics and Space Administration (NASA) at the Langley Research Center,
Hampton, VA 23665.
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27/ Visual Artifacts A
Discussion Leader: Bill Gropp
Argonne National Laboratory
Report by: A. Louise Perkins

Massachusetts Institute of Technology

The discussion began with Dr. Bill Gropp introducing the concept of visual artifacts in
numerical solutions. He presented examples of errors that appeared to be significant to the
human eye, but that were well below the error cuterla for the problem, and did not impact
the quality of the numerical solution. '

The discussion then focused on defining a model problem where v1sua.l artifacts could be
examined explicitly.

B Model Pfoblem N 9_{2 ~1 ‘1 79 /<9 A
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At the ICASE Workshop on Heterogeneous Boundary Conditions a general optics problem
that allows interference was suggested for study. The large-scale interference pattern that
develops is quite semsitive to small perturbations in the boundary conditions. Hence it
seemed ideal for testing and observing errors due to grid interface effects introduced by
domain decomposition methods. Although the problem specification is somewhat arbitrary,
it is necessary to be specific in order to compare results because it is expected that several
researchers will explore this problem.

2 Error Measurements

The interference that we wish to test lends itself to error analysis using both a visual as well
as more standard numerical acceptance criteria. The more standard numerical criteria are

e propagation error
e L, error
e L, error

e L error

By propagation error we mean the phase difference between the computed location of the
wave front and the exact location of the same wave front.

Visually this problem gives rise to an interference pattern that can be compared for
sharpness as well as location. We are interested in seeing these differences across the artificial
interfaces introduced by the decomposition.



3 Motivation

Dr. Bill Gropp suggested we examine a problem that had visual meaning in its errors, to
allow studying the types of errors introduced between refined and coarse meshes at a more
intuitive level. He suggested an optics interference problem.

4 Optical Interference

Fermats’ principle of least time is recast in Feynman et. al. [1] briefly from a quantum-
dyné,'mi'calvperspective. By considering “rays of light” as photons, the ray path can be
considered a sum of the individual paths of the photons. The ray path is then defined by
the probability of each photon taking different paths.

Upon encountering a barrier that contains a wide slit, a wave will continue through

_the slit almost undisturbed and geometric optics is a good model for ray behavior. But
when the slit is sufficiently reduced in size, the choices for photon paths are truncated, and
the probability distribution is altered, affecting the geometry of the wave front as it passes
through the slit. '

This behavior is more easily understood by considering the simpler, less accurate, but
more intuitive, Huygens principle which states that “all points on a wavefront can be con-
sidered as point sources for the production of spherical secondary wavelets. After a time the
new position of the wavefront will be the surface of tangency to these secondary wavelets”,
as described in Halliday and Resnick [2]. Considering this simplified wave theory of light, a
barrier in a wave path with a slit on the order of the wave length will cause diffractiqn. That
1s, the end points allowed to pass through the slit will no longer have symmetrical wavelets
on either side, and they will bend at the ends.

Placing two slits aside each other will replicate the limiting behavior twice, and the
resulting wave patterns will interact, causing interference. The interference pattern will be
visible, and dependent upon the original wave frequency. This interference pattern is quite
sensitive to phase errors, so that the choice of grid sizes influences the solution behavior.

This is the interesting aspect of this problem.

5 The Interference Pattern

Consider the wave equation
?—z—u = Au
ot? '
Here A is the Laplacian. In the positive quadrant place two slits along the x-axis at locations
z; and z,, with
d = Tg — Tj.

Here z, and z; are the mid-points of the two slits. Then for any point in the quadrant,
P = (z,,9p), let d; be the distance from z, to P, and d; be the distance from z; to P.
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Waves will arrive at P out of phase due to the difference in the path lengths d; and d,. The
maximum interference will occur when

\dy — dy] = mA

where ) is the original incident plane wavelength and m is a nonnegative integer. The
minimum, of course, occurs at the half distances (m + %)

The size of our slits can now be specified. They should be at most of width A. A slit
width less than or equal to the incident wavelength is sufficiently small to diffract the wave
on a visible scale. This problem is interesting because generation of the large scale pattern
depends on how accurately the small scale dynamics has been captured about the slits.

6 Geometry

Here we assume that the problem has been normalized so that

131=0,
z, =1,
yb:ov
Y =1,

We arbitrarily choose z; = 3 — 5), 2z, = 3 + 5A. This geometry is illustrated on the
following page in Fig. 1.

7 Initial Conditions

The initial region, including all boundaries except the slits, should be quiescent (u = 0).
Prescribe a plane wave described by the following function:

sin%:—r(y — vt) (7.1)

where ) is the wavelength and v is the phase velocity. This impacts our domain along the
slits (3 —5.54,1 — 4.5)] and [} + 4.5}, } + 5.5)] of the x-axis for all time ¢ > 0. Here, the
equation reduces to

, 2w
3m—/\—(—~vt). (7.2)

The phase velocity is known, allowing radiative boundary conditions to be defined. This
is done in the section 9.
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8 Exact Solution

The exact interference pattern is the superposition of the two waves. For any point P(z,y)
in the domain, the travel time to P will be different from the two slits. Let the time from
slit ; be ;. Then the value at P will be the sum of the P; where

P(2,7) = sin - (~o(t - 1)

for (¢—t;) > 0 and zero otherwise. We note that the distance from slit z; to the point P(:c,y)
is

& = (& — z:)* + y)s.

9 Boundary Conditions

All boundaries, except the slits which are prescribed with the incoming plane wave, evolve
with the solution. Any workable boundary conditions can be applied on these boundaries,
with the goal that these boundary conditions should influence the interference pattern as
little as possible.

For our prescribed incident plane wave we have the exact solution. However, prescrip-
tion of these exact boundary values on our numerical approximation of the solution could
cause the numerical approximation to degrade. Hence we recommend radiative boundary
conditions because we know the phase velocity exactly and hope that the numerical phase
velocity is quite close to the correct one. Then an open boundary condition can be used that
advects the interference pattern out of the domain by advancing the wave equation,

Ou Ou

ot Tg, =0

where n is the direction normal to the boundary.

10 Domain Decomposition Method

Our purpose in examining this test problem is to measure directly the effect of mesh refine-
ment and the resulting mesh interfaces on a known wave that is sensitive to phase errors,
while concurrently being able to visually display a meaningful picture of the effects of the
refinement-induced error on the solution.

The Coarse mesh must be able to adequately represent the interference pattern for the

visual comparisons. It should be no larger than Az = Ay = %, and may need to be smaller.
The workshop suggested %. We suggest that 2, 1—’6 and 2—’; all be tested. However, these

values are only apriori suggestions as we have not yet worked this problem.
The refined mesh must be able to adequately capture the diffraction behavior, so that
the plane wave front “bends” as it passes through the slit. Given that the coarse and refined



meshes are sufficiently accurate, the phase errors introduced during the problem solution will
be a function of the sound speed on the two grids plus the coarse/refined grid interaction

€errors.
Due to the geometry of the problem, non-adaptive local uniform mesh refinement is

adequate for the domain decomposition.

11 Discretization

We suggest a second order in space and time Leap Frog/Hopscotch discretization method
should be used. We anticipate beginning with A = 0.1, and A = 0.05. '

12 Analysis

We expect that calculations for boundary errors and the ratio of mesh refinements will be
analyzed. These can be done both analytically and by comparison to an everywhere fine
mesh.

References

[1] R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures On Physics Mainly
Mechanics, Radiation, and Heat, Addison-Wesley, (26-8), 1963.

(2] D. Halliday, and R. Resnick, Fundamentals of Physics, John Wiley and Sons, 1970.
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Discussion Leader: Rowland Glowinski F. A
' University of Texas at Houston

“ Report by: ‘Garry Rodrigue /[,\/ L—{ (’ gs,ag

University of California at Davis A
EC A07207F

Fictitious Domain methods are constructed in the following manner: Suppose a partial ’
differential equation is to be solved on an open bounded set §2 in two or three dimensions.
Let R be a rectangular domain containing the closure of . The partial differential equation
is first solved on R. Using the solution on R, the solution of the equation on {2 is then
recovered by some procedure.

The advantage of the fictitious domain method is that in many cases the solution of a
partial differential equation on a rectangular region is easier to compute than on a non-
rectangular region. Not only do more accurate algorithms exist for rectangular regions but
they are also more computationally efficient. The difficulty in the method, of course, is the
procedure that is used to tie the “global” solution on R to the “local” solution on . This
is generally where the inefficiencies of the method creep in and where most of the current
research on the method is being done. A classic application of a fictitious domain method
is the computation of the solution of an elliptic partial differential equation on a general
region. Here, the global solution on a rectangular region can be computed by a fast Poisson
solver. These solvers are quite effecient for rectangular regions but not for other geometries.
The global solution is tied to the local solution on the general region via ideas in capcitance
matrix techniques. A discusion of this approach is given in [1]. Other uses of fictitious
domain methods are given in the remaining references.

Fictitious domain methods for solving elliptic PDEs on general regions are also very ef-
ficient when used on a parallel computer. The reason for this is that one can use the many
domain decomposition methods that are available for solving the PDE on the fictitious rect-
angular region. In domain decomposition methods, the global rectangle is decomposed into
sub-rectangles of equal size and elliptic PDEs are solved on each sub-rectangle to provide
approximations to the elliptic PDE on the global rectangle This process is iterated upon
several times to get successively better approximations, see references in [4]. This is signifi-
cant in that the approximations on the sub-rectangles can often be computed simultaneously
and, thus, can be carried out in parallel on the individual processors of a multiprocessor.
Moreover, because the approximations to the global equation are furnished by the solu-
tions of PDEs on sub-rectangles of equal size, they can be calculated in the samesamount
of time. This is advantageous because the load balancing and synchronization overhead in-
curred from managing the tasks of computing the approximations on the processors becomes
almost non-existent.

The discussion on fictitious domain methods began with a short talk by Roland Glowinski
where he gave some examples of a variational approach to fictitious domain methods for
solving the Helmholtz and Navier-Stokes equations. After Glowinski’s introduction to the
subject, the question of the usefulness of the method was tossed out to the audience. A

7



comment was made that the fictious domain method scems to be the only reasonable way of
solving three-dimensional partial differential equations on general domains. This statement
was justified by the admission by several people that the implementations of standard finite
element or finite difference techniques to 3-D problems is a horrendous task. Thefe was a
considerable amount of discussion on this point but, in the end, the audience agreed that
the fictitious domain method is a viable approach to three-dimensjonal problems and more
research is needed in this area.
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matik 57, 435-451 (1990)
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Domain-Decomposed Preconditionings for
Transport Operators! ]
g1

Tony F. Chan* — CD I L'[ éd[7
William D. Gropp** _ ﬁ x 3-5-? ;’\35

and

Da,vird E. Keyes*** _ ‘(’E (p@ '0;3

Abstract

We test the performance of five different interface preconditionings for domain-decomposed
convection-diffusion problems, including a novel one known as the spectral probe, while varying
mesh parameter, Reynolds number, ratio of subdomain diffusion coefficients, and domain aspect
ratio. The preconditioners are representative of the range of practically computable possibilities
that have appeared in the domain decomposition literature for the treatment of nonoverlapping
subdomains. We demonstrate through a large number of numerical examples that no single precon-
ditioner can be considered uniformly superior or uniformly inferior to the rest, but that knowledge
of particulars, including the shape and strength of the convection, is important in selecting among
them in a given problem.

1. Introduction

The solution of lincarized convection-diffusion equations of the form
V-V .-V¢=f (1.1)

where ¢ is a conserved quantity (cnergy, mass fraction, momentum component, etc.) transported
under the influence of velocity field ¢ and diffusivity ¢ is required throughout computational physics.
Discretization by finite differences or finite elements results in a large sparse system of algebraic
equations whose solution can be demanding in computational resources and is one of the many
driving forces for parallel computation. Because the strength of coupling between a pair of dis-
crete unknowns governed by an equation like (1.1) decays with physical separation (more or less
isotropically depending upon ¢€), it is natural to partition the problem spatially when looking for
concurrency in the solution algorithm. Parallelisin is, in fact, only one of several compelling reasons
for the recent surge of rescarch on domain decomposition algorithms exemplified by the volumes [9,
10, 17). Others include a powerful theory describing optimal or near-optimal algebraic convergence
rates for hierarchical preconditioners ol domain-decomposed type, the convenience of composite ar-
ray data structures for describing complex shapes, a desire to employ solution techniques and EbalityC~

d .
// 1+ This report is an augmentation of a report entitled Interface Preconditioning for Domain-Decomposed Convection- Aion/ ‘/
/ Operators by the fimst and third authors that appeared in “Proceedings of the Third International Symposium on Domain ‘_"
7/ Decomposition Methods,” T. F. Chan, R. Glowinski, 1. Perianx, and O. B.Widlund, eds., pp. 245-262, SIAM, 1990.
—  *Tepatiment of Mathematics, UCLA, Los Angeles, CA 90024. The work of this autlior was supported in pe@
003002, DOE DETG03-87ER25037, sd ARO DAALO3 88 K-0085, -
**Mallemanics &id Compuldr Sciénce Division, Argonne National Laboratory, Argonne, IL 60439. The work of this author
was supported in part by the Applicd Matlm}g‘fjﬁcal Sciences subprogram of the Office of Energy Research, U.S. Department
of Energy, under Conttact W-31-109-ENG-38.”.
**% Deparlinent of Mec IMIT-mLEI\gTrTEeﬁ:g, Yale University, New Haven, CT 06520. The work of this author was supported
in part! by NSF ECS-8957475 and by the National Aeronautics and Space Administration under NASA Conécé%lASl-l%OS =3
while the author was Tn residence at the Institule for Computer Applications in Science and Engineering, SA"—ﬁn‘g—le’}" ,
Research Center, Hampton, VA 23665, :
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software restricted to problems with various local uniformity requirements (which are subproblems
with regard to (1.1)), and sheer problem size, which can ultimately push numerical ill-conditioning
and serial memory traffic beyond acceptable limits,

Preconditionings for interfacial degrees of freedom have been the focus of much attention dur-
ing the development of domain decomposition methods, and deservedly so, since interfaces of lower
dimension than the original domain of definition of the partial differential equation are created by
a predominant form of nonoverlapping decomposition related to nested dissection of the underlying
finite difference or finite element matrix operator. We refer generically to such forms of domain
decomposition as Schur iteration, since climination of the subdomain interiors leaves a Schur com-
plement system for the scparator unknowns. Additional interest in interface preconditioning comes
from the fact that the classical Schwarz iteration, the prototype for overlapping decompositions,
has been placed into correspondence with a stationary iteration having as unknowns the interfa-
cial degrees of freedom of a nonoverlapping decomposition [6, 11]. This correspondence between
Schwarz and Schur methods enriches the study of domain decomposition algorithms in general,
because properties which are more easily analyzed in one framework may be extended to the other.

The present contribution focuses on the performance of a variety of easily computed Schur
complement preconditioners in a rather special context: a single interface dividing a rectangle into
two subrectangles in which the capability of performing exact solves is presumed. We consider a
scalar convection-diffusion operator under a uniform or “terraced” diffusion coefficient and a variety
of continuity-satisfying flow ficlds chosen to exhibit the relative advantages and disadvantages of
the preconditioners. The pristine nature of the problem class allows focusing on the quality of the
interfacial preconditioning, alone, in four different limits: large discrete problem size, large Reynolds
(or Peclet) number, large diffusion coefficient ratio, and large aspect ratio. (The Reynolds number
is the dimensionless ratio ¢//¢, where @ is a characteristic velocity,  a characteristic length, and € a
characteristic diffusivity. Large values characterize strongly nonsymmetric, convectively-dominated
systems.) Any or all of these limits could be important in a production engineering code whose
parallelization might be sought through domain decomposition. We show that no single interface
preconditioner is best in all limits, and therefore seck to qualitatively rank their sensitivities to
these limits and identify realms of superiority.

Several different coeflicient fields ¢ and ¢ are studied because the performance of all of the
preconditioners are sensitive to them and unjustified optimism or pessimism can result from too
narrow a study. Two of our five preconditioners have been amply studied previously in the sym-
metric positive definite context of pure diffusion. There have been very few studies of any of them
in the convection-diffusion context, and since this case is also relatively untouched by theoretical
approaches, apart from spatially invariant velocity (hstnbuhons numerical studies are contmumg
to yield interesting information. - : e e :

We comment bricfly on a few other issucs whuh bca.r on our choxce of scope. It is possible to
set up an alternative framework for nonoverlapping decompositions in which interfacial coupling
is simply discarded, or partially accounted for in ways that do not require special treatment of a
separalor set; sce, ¢.g., [1] and [26]. In so doing one obtains the advantages of greatly simplified
coding and less inter-domain data traflic per iteration. Problems dominated by local interactions
can be handled quite acceptably by decoupling; sce e.g., [23]. llowever, in problems which are
diffusively dominated (more fundamentally, problems whose Green’s functions have support which
is not substantially confined within artificial subdomain boundaries), such approa hes haye limited
applicability to large numbers of gridpoints and for subdomains. ,

The special case of a single interface obviates discussion of prccondltlomng the set of vertices
where multiple interfaces intersect. Vertex prec onditioning is very important but aIso more readﬂy
prescribable, at least in two dimensions. A coarse grid problem for the vertices having the same
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structure as the undecomposed original problem can be derived directly from the differential op-
erator by employing a hicrarchical basis discretization. The interface system, on the other hand,
corresponds to a pseudo-diflerential operator, the numerical analysis of which is relatively less well
developed in the presence of convective terms. In a preconditioner consisting of component blocks
corresponding to subdomains, vertices, and interfacial edges (and interfacial planes in three dimen-
sions), any one block can limit the overall performance. A study of interface preconditioning is
thus necessary, but not suflicient, for guiding the construction of complete preconditioners.

Finally, as to the relevance of our scope, we note that practical problems often involve several
simultancous convection-diffusion operators linked through coeflicients or source terms. Continued
study of the scalar case is, however well motivated by techniques such as the alternating block
factorization [4] which succcsbfully employ scalar preconditioners inside of a change of dependent
variables which partially decouples the original system.

The algorithmic framework of our experiments is described in Section 2, followed by intro-
duction of the five interface preconditioners and a brief discussion of their properties in Section 3.
Section 4 contains performance measurements in the form of iteration counts along several axes of
problem parameter space. We draw some conclusions and recommendations in Section 5.

2. Schur Domain Decomposition Methods

We take as our starting point the matrix equation Az = b arising from a finite difference dis-
cretization of of (1.1). The domain decomposition method we employ is an iterative substructuring
method consisting of three clements: (1) the operator A whose inverse action we would like to
compute with an accuracy commensurate with the discretization, (2) an approximation B to A,
whose inverse action is computationally convenient to compute, and (3) an acceleration scheme for
the preconditioned system which requires only the ability to form the actions of A and B~! on a
vector. In all cases reported herein, A is derived from a second-order central differencing of the
diffusion term and a first-order upwind differencing of the convection term. Extensions to second-
order upwind differencing have been carried out in, for instance, [27]. We usé right-preconditioned
GMRES [30] as our iterative acceleration scheme, lel is, we solve AB~1y = b by the applymg the
standard GMRES algorithm to (AB~!) then recover tlnough the solution of Bz = y.

GMRES is guaranteed to converge in a finite nuniber of steps for nonsingular AB~! even in
the presence of nonsymmetry or indefiniteness, assuming exact arithmetic. The maximum number
of steps required is the number of distinct cigenvalues of the preconditioned operator. This con-
vergence result depends upon dynamically storing a complete basis for the Krylov space built from
powers of AB™! acting on the initial residual vector. For large problems, this much memory can
easily become excessive, and GMRES is often truncated or restarted [30] in cases where it does
not converge within a predetermined number of steps. llowever, we allow full GMRES iteration
in our experiments, up to some maximum number of steps (set at 30 herein) which is sufficient in
all but two cases. Because fewer than 30 steps are almost always sufficient, we effectively suppress
from consideration the restart or truncation parameter. This parameter can be important in a
“production” setting.

The substructuring enters through the manipulation of A and B into forms which possess
large block zeros, for the sake of concurrency or for some of the other reasons noted in the intro-
duction. For clliptic operators such as (1.1), A is irreducible; hence there are no block triangular
permutations. However, if the domain is cut by the removal of a swath of gridpoints as wide as the
semi-bandwidth of the stencil, two large subproblems are created whose only coupling is through
the small removed set. For five-point stencils on logically tensor product grids, we may choose
a single row or column of unknowns. (A two-point-wide generalization has been studied for the
thirteen-point biharmonic stencil in [8].) Ordering the separators last, we obtain

11



z’l“ 0 1113 oy ] bl
Ar = 0 /\22 11-23 () = b) = b. (21)
Az Agz Ass T3 bs
Here, Aj; and Agy are five-point operators with bandwidth no larger than that of the naturally
ordered original system, but Ags, which renders the coupling between the points on the interface
itself, is tridiagonal. The other blocks contain the coupling of the separator unknowns to the
subdomains, and vice versa. From the point of view of the continuous operator they represent
derivatives in directions normal to the interface. = '
Block Gaussian elimination of the unknowns zy and z, would y1eld the Schur complement
system

Crq=4d (2.2)
for z3, where
C = Agy — A AL A1z — AseAg) Aus (2.3)
and
d = by — A A7 by — Az AZ) b (2.4)

If z3 can be found, the subdomain pxoblemq are decoupled. lowever, direct computation of the
generally dense C' in order to solve (2.2) requires as many pairs of exact subdomain solves as there
are degrees of freedom in x3, which is generally prohibitive. It is also unnecess?r? inasmuch as
iterative techniques have been devised which require many fewer iterations than the dimension
of z3, and which furthermore require only approximate subdomain solves in each iteration. As
mentioned already, we shall ignore the option of inexact subdomain solves in the sequel, effectively
reducing the iterations lo the interface, but we nevertheless make use of a general purpose code
which retains the interior degrees of freedom in carrying out the numerical experiments.

We consider two families of preconditioners I, the structurally symmetric

Ay 00 I 0 A;l Az st
By=1 0 Ay O 0 I A3 Axn
A31 A32 M 0 ¢ ]

A“ 0 A AIJ ) )
0] A Az ’
.‘131 f‘dl A[-{- /1“.4“ ‘113-{- 13;A22 Azg
where A appmxmmtes the Schur complement € (2.3) of Ayy and Az in A, and the SImpler block
triangular

An 0 Agg
Bz = 0 /122 Azg
0 0o M

The f.u torized form of B, above shows that the cost of applying the inverse of 31 is one solve
with M aud two solves cach with Ay and Ayz. There is an inherent sequentiality to the subdomain
solves, however, since the system involving M i in the left factor requires data from the first set of
subdomain solves. The inversc of B, can be applied to a vector at the cost of solving one system

cach with M, Ay, and Ay,. The system for M is solved first, followed by mdependent solves in

the subdomains which use the interface values as boundary condmons
We assume throughout that the A;; are invertible. (This is ccxtamly a reasonable requlrement
for a discrete convective-diffusive operator and is guaranteed herein for all Reynolds numbers by

upwind differencing.) Under this assumption, C is also invertible [15]. -~ = -0 o
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For matrices arising [rom standard quasi-uniform finite element discretizations of elliptic partial
differential equations, A has a condition number of O(h~?%), whereas C has a condition number of
O(h~1) [5, 29]. The equivalence of conjugate gradient iterations on the Schir complement system
with preconditioner M and on the {ull substructured matrix A with preconditioner By was shown
in [24].

For reference in Section 4, it is interesting to note the forms of the preconditioned ‘operators
ABI", and ABZ“. In order to make the formulae more readable, we combine the independent
subdomain solves into a block matrix Aq, and denote the separator block by Ar, to re-express the
above matrices as

A= Aq  Agp b= A Aqr B = Aa  Aar
A Ar )0 7T \Are M+ ApedgtAar )00 o M)

whence » | ] |
Bl = AQ + A(—) AgrM ! /l[‘QAS _Ai_l Am‘M—l
- —]W—l/l[‘gz/la] M-
and : .
Bl = AQ -Ag AqrM—1
2 0 M1 '
From these expressions it can easily be verified that
- 1 0 _ I 0
. - . 1 _

It is evident that if C' is exactly represented by M, then AB7! reduces to the identity, and
an iteration involving AB;' will converge in one step requiring two sets of subdomain solves.
An iteration involving AB;', on the other hand, will converge in two steps (from an arbitrary
initial guess) if M = C, but cach step requires only one set of subdomain solves. (These iteration
counts do not include the final solve with either 13; or I which is required to unwind the right-
preconditioning.) More generally, if M is sulliciently close to C in the sense that the lower-left block
of the structurally symmetric system is small, ||(/ = CM~1)|| € 1, we expect that an iteration
based on B3 will require an extra iteration relative to an iteration based on B;. Conversely, if M is
a poor preconditioner for C, so that the lower left block becomes large, the use of the structurally
symmetric system could require more iterations than the use of the block triangular system. Both
bechaviors are illustrated in Section 4.

Note from (2.5) that AB;' and ABJ' have identical spectra, as Arnoldi estimates for the
eigenvalues obtained as a by-product of the GMRES iterations also show. However, Krylov se-
quences based on the respective operators will in general differ, and there is little that can be said
about which method will lead to faster convergence for general & if M and C are not sufficiently
close.

For some of the preconditioner components M we consider, the overall preconditioning process
is numerical unstable, as will be seen in Section 4. Even though the iterations involving AB~1 may
converge, the final result afler unwinding the preconditioning may have few or even no significant
figures. For this reason, we always check the actual residual || f— Az|| at the end of each calculation.

3. Schur Interface Preconditioners '

We proceed to delineate five alternatives for the matrix M.
*

3.1. Interface Probe Preconditioner - 7
Interface probe preconditioning is a family of methods for approximating the true Schur com-
plement € defined in (2.3) by low bandwidth matrices. We use the nomenclature IP(k) to denote
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the approximation sequence M = Ar— Eg, k= 0,1,2,. .., where Ey is a matrix of semi-bandwidth
k which produces the same action as ArQAalAm‘ on a set of 2k + 1 test vectors. Note that when A
arises from a five-point finite-difference discretization both the IP(0) and IP(1) preconditiohers are
tridiagonal because Aqr is. As k increases beyond 1, M acquires additional diagonals. Selection
of test vectors of appropriate sparsity patterns enables the coeflicients of Ey to be read directly off
of the product involving AmA‘;'Am‘, hence the term “probe.” We report only on the row-sum

conserving IP(0) herein. IP(1}) is ouly rarely more cost effective than IP(0) over the range of non- -

symmetric scalar five-point stencil problems studied herein, and a law of diminishing returns sets
in as k is increased.

IP(0) was invented independently by Chan and Eisenstat in 1985, immediately generalized to
IP(k) in [14], and adopted for variable coeflicient symmetric problems in [24] (where it was called
the “modified Schur complement” method) and for nonsymmetric problems in [25, 26]. Symmetric
versions of IP(0) and 1P(1) have also been employed in [2, 3]. Many algebraic and spectral properties
of banded and circulant probe preconditioners are derived in [13]. The interface probe technique
has the advantage of being purely algebraic in character, and hence capable of being defined for
arbitrary operators. It is aesthetically pleasing that the tunable parameter £ may be taken from
the crude approximation of 0 all the way to the {ull bandwidth exact solution. It has also been
generalized in a straightforward way to multicomponent systems [26]. However, IP(k) for low k
is not expected to be particularly useful for arbitrary matrices. The low & limit is motivated by
the observation that the elements of C decay rapidly away from the diagonal for elliptic problems.
In sufficiently simple elliptic problems (e.g., those possessing constant coefficients) preconditioners
described below taking better advantage of this structure are also possible, leaving IP(k) large
but not unlimited regions ol problem parameter space in which to exercise. Interface probing
has the advantage of being automatically adaptive to spatia,l variation in the coefﬁcients but the

it degx ades as the mesh is lcﬁnod Expoumontally [24], the condmon number of the preconditioned
Schur complement system for the Laplacian goes like h=1/2 and this bound is conjectured to be
the best attainable for any tridiagonal matrix based on experiments with an optimization code in
[20] An h=Y2 hound is proved for a circulant probe-preconditioned system with periodic boundary
conditions on the boundaries normal to the mtcxf(xcc in [13]. -

3.2. Spectral Preconditioner

The spectral preconditioner is an exact eigendecomposition of a single interface, rectangular
domain, constant coefficient convection-diflusion operator described in [12] as a generalization of [7].
We consider only the Dirichlet case herein, but generalizations to Neumann boundary conditions are
straightforward. Let an interface of n interior nodes (i.e., h=! = n4 1) separate two subdomains of
the same discrete length, and discrete heights nyy and my, respectively, over all of which is satisfied

the difference equation
ariy; +bxi; + cipr; +dz e +exi o = fi, (3.1)

where 7 denotes the free index along the interface. We may write M = DWAW-1D-1 where w
is the discrete sine transform of length n with matrix representation

(Wli; = V2hsinijrh, (3.2)
D is the diagonal matrix with elements . .
ar(im1)/2 ,
= (= 3.
wl=(2)" 7, (33)
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Figure 1: Modes of the Dirichlet problem (3.1) for n = 15.
(a) lafc| = 1,7 = 1; (b) |afc] = 1.21, j = 1; (c) |a/e] = 1,
i =8 (d) |efe] = 1.21, 7 = 8; (e) lafe] = 1, 7 = 15; (f)
la/c| = 1.21, 7 = 15. (The left-hand column of modes are for
the case of no tangential convection.)

and A is a diagonal matrix with clements

DR N 57 & 7 2
[A]'~§<1—7{"1+1+1—7{"7+1 \ﬁb+\/(_12(2—a.~)] — 4de,

where, in turn,

1

¥i = — [b+\/cl_c(2—0,‘)+ \/[b+\/(E(2—a,-)]2—4de]

2
= Ade
. i
a; = 4 51112 (m) .

and

(3.4)

(3.5)

(3.6)

The derivation of these formulae (sce [12] for full details) begins with the observation that the
columns of the matrix (DW) are the eigenvectors of the tridiagonal matrix formed by the coefficients
along the interface, viz., tridiag(a, b, ¢). Sample such modes are plotted in Figure 1 for two different
values of the ratio |a/c| corresponding to zero and constant nonzero tangential components of the
convection. The nonvanishing first-derivative convection term has the effect of multiplying the

sinusoids by an exponential.

The philosophy of using the spectral preconditioner for arbitrary interfacial systems is that
of solving an approximate (constant cocflicient) problem exactly, rather than an exact (general

15



cocflicient) problem approximately. One of its advantages is that it can be defined without requiring
the ability to solve problems in adjacent subdomains, as required by tlhe interface probe technique.
All that is needed is some averaging rule to obtain the coefficients a through e from the data of
the associated regions. All our tests herein employ a simple average of the coefficients along the
interface alone. Another advantage is its automatic adaptivity to domain aspect ratio, since the
boundary conditions are built into the derivation. We note that application of M ~! is inexpensive:
two one-dimensional FI'Ts sandwiched between three diagonal matrix multiplications.

3.3. Spectral Probe Preconditioner

The spectral probe preconditioner, introduced here for the first time, is conceptually a hybrid
of the interface probe and the spectral preconditioners. Spectral probing assumes a form for the
eigenvectors of C like that derived for the constant coefficient operator of the previous subsection
(again based on spatially averaged cocflicients), but then populates the diagonal matrix A by
probing the true Schur complement, so that some spatial adaptivity is accommodated within a
spectrally equivalent framework.

We set M = DWAW=TD=! where W and D are defined as above (or where D is alternatively
simply set to the identity matrix, corresponding Lo ¢ = ¢, for reasons which will become clear in
Section 4). A is then determined by probing with the interface vector of all 1’s. This is the same as
the standard test vector for IP(0). To be explicit, we read off the elements of A from the equation

W-IDTICDW 1 =A%1

The action of C is computed by means of a pair of subdomain solves using DW 1 as the ipterface
boundary condition. Note that the spectral probe preconditioner reduces to the spectral precon-
ditioner in the constant coeflicient Dirichlet case, because then C is exactly diagonalized by the
given similarity transform.

3.4. Laplacian Square-root Preconditioner

As a basc-line reference, and because it appears throughout the literature, we include tests
with a method based on the square-root of the one-dimensional Laplacian operator, easily written
as:

M=WAW™!
where A is now the diagoual matrix with elements [A]; = 2,/6;. We sometimes denote this oper-
ator as Dryja’s preconditioner because of its popularization in this context in [16]. More general
discrete antecedants were considered in [18]. It is difficult to pinpoint the discovery of the spectral
equivalence of this operator to the Schur complement of the Laplacian, since the continuous analog
of this equivalence has been known for some time. This preconditioner is expected to be good in
diffusion-dominated problems, or in the discrete limit A — 0.

Note that this preconditioner is distinct from the spectral preconditioner (§3.2) for the Lapla-
cian. Dryja's preconditioner achieves a constant bound on the number of iterations as the mesh is
refined, but the constant is geuelally higher than that achievable with the coefficient and aspect
ratio adaptability of the previous two techniques. The literature also records two important precon-
ditioners intermediate between the Dryja and spectral techniques, namely [19] and [5). The latter,
the Neumann-Dirichlet preconditioner, contains some of the adaptive capabilities of the spectral
precondltloner since it relics on subdomain solves in its construction and hence contains much coeffi-
cient information. It is similar to probing techniques in this regard. In fact, the Neumann-Dirichlet

precomhtloner is exact mfpr’oblems possessing symietry across the separator set. All four of Wthe

techniques of [5 7 16 19] were tested in [24], but for brevity we test only the extremes here.

3.5. T@g@gtlal Precondxtrorrer S

Finally, we consider a simple plccomhnoncr possessing partla,l adaptlwty, a lower dlmensxonal
restriction of the operator to the interface created by setting all of the normal derivative terms in
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the operator to zero and retaining just the remainder in M. For (1.1) these are just the tangential
derivative terms. The obvious motivation for this technique is that it is simple and is expected
to work well in the limit of strong convection along the interface, a limit which turns out to be
troublesome for the spectral and spectral probe preconditioners. In addition, its very satisfactory
behavior in the multidomain experiments in [21] recommend it. For reasons not yet theoretically
explained, it performs very well in conjunction with the block triangular form of the the overall
preconditioner described in Scction 2. A minor disadvantage is its requirement of partial knowledge
of the differential operator, rather than simply the elements of the discrete operator A. To be
specific, it is necessary lo store separately the contributions to A arising from the normal derivative
terms, and all other terms. .

4. Numerical Experiments

All of the experiments to follow except for those of Table 14 are posed on the unit square (! = 1
in the definition of the Reynolds number, Re) with homogeneous Dirichlet boundary conditions.
The five different continuity-satisfying flow ficlds tested are shown in Figure 2(b)-(f) , along with
a purcly diffusive bascline case (Figure 2(a)). When Reynolds numbers are reported below for the
variable coefficient cases, they are always based on the maximum velocity in the region. (See [28]
for details on the jet and cell flows and other experiments on this particular problem set.) The
interface divides the rectangle into equal upper and lower portions, as marked on the figure in the
dashed line. In addition to cases with constant diffusion, we study in §4.3 a convectionless case
with piccewise constant, but disparate, diffusivities on cither side of the interface.

There is a constant source term of unit strength in the interior. Although it is special, a zero
initial guess for the solution vector is employed throughout, since this will usually be the natural
choice when (1.1) arises for a Newton increment, as part of an outer nonlinear iteration. The
performance of the preconditioners is measured by the number of iterations required to reduce the
initial residual by a factor of 1075, regardless of the mesh resolution. The tables of iteration counts
are grouped by subsections into four sets ol experiments.

4.1. Sensitivity to Mesh Refinement

Tables 1 through 6 examine a constant Re situation as the (uniform) mesh is refined by three
successive powers of 2. Of course, the discrete diffusion term, the Laplacian, becomes more and
more dominant with each refinement of the grid, since it scales as A2 as compared with the A~!
scaling of the convection term. This is the asymptotic limit for which D and its relatives S and
SP are designed. In the first table, the Laplacian is studied in isolation (Re = 0). In the next
five convective cases, Re = 16. For the coarsest mesh (A~! = 8), the contributions to the diagonal
of the discrete operator from the two terms are equal at this Reynolds number (the cell Reynolds
number, Re. = ch/fe, is 2).

Structurally Symmetric Block Triangular
Rt P | S [se[ D] T |IP|]S|sP|D]|T
8 4 1 1 5 5 5 2 2 4 4
16 6 I 1 5 7 7 2 2 5 4
32 i 1 5 9 9 2 2 S 4
64 11 1 1 4 [1 12 2 2 5 4

Table 1: Iteration counts for the pure diffusion problein as a
function of mesh parameter for two different preconditioner
structures and five different interface blocks. ’
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tal

Flgure 2 Streamfunctlon contour plots of the two-difhen-

sional flow fields represented by & in the numerical experi-

ments. (a) Pure Diffusion; (b) Normal Convection; (c¢) Tan-

gential Convection; (d) Skew Convection; (e) Jet Convection

(the domain is the nglxt half of a symmetrlc flow ﬁeld) (f)

Cell Convectlon

Thc S (spectral), SP (spectral probe), and D (Dlyja) columns of Table 1 reveal thelr exa.ctnessr
or spectral equivalence, respectively. Because iteration count is a threshold measurement, most of
the data is subject to £1 perturbation upon modest adjustment of the convergence tolerances, but
the S and SP residuals at convergence are zero to machine precision. ‘The deterioration of IP like

some ncgatwe power of A is evident on both the structurally symmetnc (Bi) and block triangular

(B3) sides of the table.

The tangential preconditioner is the only one with markedly different

performance depending upon tllc structure of B. Ilere, as below, it is excellent in conJunctxon with

the block trlangular l'orm

a Reynolds number of 16.

Structulally gvmmotuc 3 Block Triangular
h-1 1r S SP D T IP S SP D T
8 3 1 1 q 5 4 2 2 4 5
16 5 1 1 5 7 6 2 2 5 5
32 6 1 1 5 9 7 2 2 ) 5
64 7 1 1 5 12 8 2 2 5 5
Table 2. ame as 'LLblL 1, excopt for normal convection at

Ta.l)lé 2, for a norlrnal‘(;clnvovtidn 'prl‘rol)lenrl, is similar to Table 1 except that IP improves slightly
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as each of the terms Ay, A[ll Ay and Az /1.2‘21 A3 being approximated by a diagonal matrit becomes
less important relative to Ay because one of the coupling matrices is small. For instance, if the
convection is from subdomain ! into subdomain 2, A;3 and A3, are weak.

Structurally Symmetric Block Triangular
h—! I S SP D T | IP S sp D T
8 5 I 7 8 6 5 2 8 7 4
16 6 1 10 10 9 7 2 11 10 5
32 1 11 11 1 9 2 12 11 5
64 11 1 12 11 15 12 2 13 11 5

Table 3: Same as Table 1, except for tangential convection
at a Reynolds number of 16.

The importance of the I matrix in the spectral preconditioner is evident in Table 3 in which a
tangential convection problem is considered. The version of SP employed in this study approximates
the D in its definition as the identity; using the true D here would reproduce the spectral results
in this constant coefficient case, just as in the previous two tables in which D = I anyway. Though
SP and D are spectrally equivalent, they require an order of magnitude more iterations than S, and
are surpassed by IP in the smaller problem range on the structurally symmetric side, and by the
tangential preconditioner on the block triangular side.

Structurally Symmetric Block Triangular
h! 1P S sp D T I S sp D T
8 4 1 7 8 7 5 2 8 8 6
16 5 1 9 10 9 6 2 10 9 6
32 7 1 10 10 12 8 2 11 10 6
64 9 1 10 10 15 10 2 11 11 7

Table 4: Same as Table 1, except for skew convection at a
Reynolds number of 16,

Table 4 contains the last of the constant coefficient test examples, featuring a skew convection
(inclined at 45 degrees relative to the interface). Overall results are not very different from the
purely tangential convection case. Most of the entries In the skew table lie at or between cor-
responding entries in the normal and tangential tables. Those of the tangential preconditioner,
however, are often worse in the intermediate skew convection case than at either extreme.

1)

Structurally Symmetric Block Triangular |
h-1 IP S ) D T Ip S sp D T
8 ) 4 5 6 6 ] 3] 6 6 5
16 6 4 6 6 8 7 5 7 7 6
32 9 4 ] 6 11 10 ) T 7 7
64 11 4 6 (] 14 12 5 7 7 8

Table 5: Same as Table 1, except for jet convection at a
Reynolds number of 16.
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The jet case recorded in Table 5 tends to level the preconditioner landscape because the
coustant coeflicient approximation of S is no longer exact. S remains the best technique as h-1
increases, but its margin of superiority over other spectrally equivalent techniques (with D as a
nonadaptive extreme) is small.

- Structurally Symmetric Block Triangular
Ul s s D] T|IP]S[SP]D]J]T
8 4 5 4 5 b 5 5 5 5 5
16 6 ] 5 6 7 7 6 6 6 6
32 9 ) 5 5 9 10 6 6 6 6
64 11 5 5 5 11 12 6 6 6 6

Table 6: Same as Table 1, except for cell convection at a
Reynolds number of 16.

The cell case of Table 6 is the greatest equalizer among the test cases, because the interface
cuts a zone of recirculation, i.e., there is normal flow across it in both directions, and none of the
methods holds an edge of superiority. Performance under the block tridiagonal preconditioner is
notably uniform for the last four methods.

4.2. Sensitivity to Reynolds Number

Tables 7 through 11 examine the influence of increasing Reynolds number. Values of Re of
0, 4, 16, 64, 256, and 1024 are considered at A~! = 64. Thus, the third row of each table in this
subsection is the same as the last row of the table of corresponding flow type in the first set,’and the
first row of each table is the same as the last row of the pure diffusion case in Table 1. Progressing
down the rows of the table the nonsymmetry of the operator increases. Between rows four and
five the convection terms begin to contribute more heavily than the diffusion terms to the diagonal
clements of A.

Structurally Symmetric Block Triangular
Re | IP [ S[SP|D|T]|[IP]S][SP]DIJT
0 11 1 1 4 11 12 2 2 5 4
4 10 1 1 4 11 11 2 p 5 4
16 7 | I 5 12 8 2 2 5 5
64 5 l 1 7 14 6 2 2 7 6
256 3 1 1 11 17 4 2 2 10 9
1024 2 1 1 15 22 3 2 2 12 16

Table 7: Iteration counts for the normal convection prob-
lem at a constant mesh parameter of 1/64 as a function of
Reynolds number for two different preconditioner structures
and five different interface blocks.

Table 7 shows that in the presence of constant normal convection, techniques S and SP remain
exact at any Re, while IP catches up at high Re, and D and T successively worsen. (For D, this
is the drawback of finite & in a method derived for b — 0.) Qualitatively, the trends are the same
for either preconditioner structure, although the tangential method continues to be much better in
the block triangular formulation.

The Achilles” heel of the spectral technique appears when there is strong convection tangential
to the interface, as scen in ‘Table 8. In this limit in which |a/c| differs sufficiently from unity the
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Structurally Symmetric Block Triangular
Re P S SP D T IP S SP D T
0 I1 1 1 4 11 12 2 2 5 4
4 12 1 7 7 14 13 2 8 8 5
16 11 1 12 11 15 12 2 13 11 5
64 8 1 20 15 14 9 2 21 15 3
256 7 - > 20 12 8 - > 19 1
1024 5 - > 26 8 6 - > 24 1

Table 8: Same as Table 7, except for tangential convection.
The hyphen denotes loss of precision, and the “>” more than
30 iterations.

latter terms in D, which have this ratio raised to as much as (n — 1) power, can approach the
machine epsilon (or its reciprocal, depending upon the direction of the convection). In reference to
(3.3), we note that for n = 64, (a/c)*~ /2 = paen, & 10716 when (a/c) ~ 10(-32/63) ~ 0.31. Under
upwind differencing, it only takes a cell Reynolds number of 2 to produce a ratio of 3 between the
upwind and downwind stencil coeflicients @ and ¢. Thus, Re, = 2 is the borderline of stability
for the spectral preconditioner with respect Lo tangential convection. In the tables, the Re = 64
row corresponds to a cell Reynolds number of unity, and the Re = 256 row to a cell Reynolds
number of 4; thus, they straddle the transition. GMRIES iterations based on the spectral interface
preconditioner do terminate for the hyphenated entries, but the residuals based on the resulting =
vectors shows complete loss of precision.

The spectral probe technique does not lose precision, because of the assumption that D = TI;
however, a diagonal approximation for W~'CW is poor, and it simply takes too long to converge.
The Dryja preconditioner, which makes no attempt to adapt to the strong directionality of the
problem also deteriorates with Re. At low Re where M and C are close, the B, iteration count
is lower by one; but at high Re, where isotropic M is very different from unidirectional C, the B,
iteration count is better. The interface probe technique meanwhile improves with Re as it captures
more of the increasingly diagonally dominant problem within its own sparsity structure. Finally, the
tangential technique is excellent for a tangentially dominated operator. The cross-diffusion which
it neglects becomes of negligible importance as the problem effectively decouples into independent
problems for Ay;, Az3, and Asz in which the upstream boundary condition is all important.

Structurally Symmetric Block Triangular

Re 1P S Sp D T IpP S SP D T
0 11 l 1 4 11 12 2 2 5 4

4 11 i 7 7 14 12 2 8 8 6

16 9 1 10 10 15 10 2 11 11 7
64 7 1 13 14 17 7 2 14 14 8
256 4 - 13 18 19 5 - 14 16 9
1024 3 - 13 20 19 4 - 15 17 10

Table 9: Same as Table 7, except for skew convection.

Most of the observations of the high Re tangential flow also apply to the skew flow in Table 9,
however, the latter differentiates between IP, which repeats its tendency to improve as Re grows,
and T, which no longer matches the physics of the problem, and is worse than IP, although it is
still superior to the Fourier-based methods as a module of the block triangular preconditioner.
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We also note that the spectral probe technique captures a significant part of the pltysics in
this case, adapting to the co-dominant normal convection and tending to a constant iteration count
without breaking down. Tt thus rescues the spectral technique and indicates how the robustness of
the spectral preconditioner can be maintained with a compromise in efficiency. In a general purpose
code, the elements of the D matrix could differ from unity but be bounded artificially, allowing
partial tangential adaptivity with full normal adaptivity.

Structurally Symiuetric Block Triangular
Re | IP | S |[sP|DJ|]T|IP| S |SP|[DI|T
0 i1 1 1 ! 11 12 2 2 5 4
4 11 3 4 o 14 12 4 5 6 6
16 11 4 6 6 14 12 5 7 7 8
64 10 6 9 9 14 11 7 10 10 9
256 9 7 11 14 13 10 8 12 14 10
1024 9 - 20 19 14 10 - 21 18 11

Table 10: Same as Table 7, except for jet convection.

As in the spectral equivalence tests in Table 5, the jet case recorded in Table 10 tends to
diminish the extremes of preconditioner behavior relative to the uniform skew convection case.
The IP and SP results worsen while the D and T metliods nearly hold their own relative to Table 9.
The pure spectral method survives at a higher overall Reynolds number because the tangential
velocities at the interface are lower than the maximum core velocity of the jet, to which Re is
scaled.

Structurally Symmetric Block Triangular
Re | IP | S |sp|D]T]|IP]S]|]SP|D]|T
0 11 1 I 4 11 12 2 2 5 4
4 11 3 3 1 11 12 4 4 5 5
16 11 5 5 5 11 12 6 6 6 6
64 13 8 7 8 13 14 9 8 9 8
256 18 14 11 14 16 19 15 12 14 15
1024 25 23 16 23 26 26 23 17 23 24

Table 11: Same as Table 7, except for cell convection.

Again, the cell case of Table 11 is an cqualizer for most of the methods; however, the perfor-
mance of the spectral probe technique is singularly good. This is easily explained as follows: the
average langential velocity along the interface is zero because of the symmetry of Figure 2(f), so
D = I for both S and SP. llowever, S also employs an zero average for the normal velocity, whereas
SP adapts to strong inflow and outflow along opposite halves of the interface. The performance
of IP, which improves with Re in all previous tables, deteriorates in this table because no pair
of coupling matrices is weak (sce comments on Table 2) under recirculation. Performan'ces under
the structurally symmetric and block tridiagonal schemes of the tangential preconditioner become
similar at high Re. The recirculating cell flow is in some sense a worst case for a single interface. If
the domain of Figure 2(f) is further decomposed by a vertical interface, putting a vertex in the cen-
ter, all four interfaces would be free of two-signed velocity components, and easier to precondition.
(The cross-point preconditioning then becomes an important subject.)
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Figure 3: Contour plots of the solution to V - eVu = f
with homogeneous Dirichlet boundary conditions and f =1
for various ratios of the (piccewise constant) diffusivity in
the adjoining subdomains. “Ratio” is €lower [ €upper and the
product €jower Cupper 15 Mmaintained at unity.

4.3. Piecewise Constant Diffusivity

This subsection focuses on the effectiveness of the preconditioners in heterogeneous problems.
With reference to Figure 3, we assign a higher diffusivity in the lower domain than in the upper.
We report convergence results in two limits: fixed diffusivity ratio and increasing h=! (Table 12)

and fixed A~! and increasing diffusivity ratio (Table 13).
The performance of the two probe and the tangential preconditioners in the terraced diffusivity

case in Table 12 is identical to their performance in the uniform case of Table 1. However, the
Dryja preconditioner is slightly worse and the spectral preconditioner (based on the arithmetically
averaged diffusivity) is much worse than in the uniform case. In fact, S is the worst preconditioner
in the terraced diffusion case while SP is the best, the probe supplying crucial information.

As the ratio of diffusivitics increases for a fixed problem size, as in Table 13, all methods
asymptote monotonically to fixed convergence rales, as shown theoretically in [13]. The physical
interpretation of the asymptotically large diffusivity ratio is that virtually all of the variation
of solution in response to the (fixed) forcing occurs in the subdomain with the lesser diffusivity.
Figure 3 illustrates this phenomenon. The contours are kinked at the interface since it is the normal
component of the diffusive flux, cVu, not Vu itself, which must balance on either side. The solution
along the interface is asymptotically the boundary value of zero. The spectral probe method is a
singularly good performer in this limit.

4.4. Sensitivity to Aspect Ratio ) 7
Table 14 examines the constant diffusion case under aspect ratios ranging from 1:11—6 (a squat
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Structurally Symmetric Block Triangular
h-1 P S Sp D T 1P S SP D T
8 4 4 1 5 5 5 5 2 5 4
16 6 6 1 5 7 7 7 2 5 4
32 9 1 6 9 9 9 2 5 4
64 11 12 1 6 11 12 13 2 5 4
Table 12: Tteration counts for the step diffusion problem as
a funclion of mesh parameter for two different preconditioner
structures and five different interface blocks. The ratio of the
diffusion coeflicients of the two subdomains is 64.
Structurally Symmetric Block Triangular
| Ratio | IP S SP | D | T [ 1P S SP D T
1 9 1 1 5 9 9 2 2 5 4
4 9 7 1 5 9 9 8 2 5 4
16 9 8 1 5 9 9 9 2 5 4
64 9 9 1 6 9 9 9 2 5 4
256 9 9 1 6 9 9 9 2 6 4
1024 9 9 1 6 9 9 9 2 6 4

rectangle with subdomains just two cells high) to 1:2 (a tall rectangle composed of two square
subdomains). Note that the discrete length of the interface, n, remains constant at 63 in all
examples, while heights m, and m; vary from 1 to 63.

Table 13: Iteration counts for the step diffusion problem at
a constant mesh parameter of 1/32 as a function of diffusiv-
ity ratio for two different preconditioner structures and five
different interface blocks.

Structurally Symmetric Block Triangular
Iz, 1) P S Sp D T P S SpP D T
(1,@) 4 1 1 8 | 14 4 2 2 8 | 13
(1,§) 5 1 1 6 13 6 2 2 6 10
( 1,¥) 7 1 1 5 | 12 8 2 2 5 7
(1, -2-) 9 1 1 5 11 10 2 2 5 5
(1,1) | 1 1 1 4| 1| 12 2 2 5 | 4
(1,2) 9 1 1 1] 8] 10 2 2 5 2
Table 14: Iteration counts for the pure diffusion problem o

problem which is not true of any other method, including Dryja’s. The tangential preconditioner
is understandably good when the narrow (more strongly boundary influenced) direction is tﬁhe
tangential onc, and poorer when this aspect ratio is reversed.
IP is mtcu,btmg, showmg that it adapts well to either extreme and is poorest in the balanced

at a constant mesh parameter of 1/64 as a function of as-

different interface blocks,
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intermediate case.

6. Conclusions

We conclude by pulling together some overall assessments of the preconditioners tested in the
previous section. The interface probe technique is the most general purpose and robust of the meth-
ods. It is always definable and adapts well to high Re and extreme aspect ratio, but is nonoptimal
at high ~=1 and is occasionally the worst method. It does very well in predominantly unidirectional
strongly convective flows. Generalizations to multiple interfaces, multiple components, and inexact
subdomain solves are straightforward, but not pursued herein (see [26]).

The spectral method is mathematically the method of choice asymptotically in h~!, where
physically well resolved problems should end up. However, since it is based on a global constant-
coefficient approximation it does not perform well in heterogeneous problems. Furthermore, high
cell Reynolds numbers can cause it to go unstable, and flow fields whose actual values along the
interface differ greatly from their average values are poorly represented. A stabilizing technique
was proposed which could preserve the robustness of the spectral method at high cell Reynolds
numbers, namely selection of an exponent base for D in (3.3) closer to unity than the true |a/¢|.

The spectral probe method is as good as the spectral method when W alone is a good ap-
proximation to the eigenvectors of C (i.e., low tangential convection). A D-modulated version of
spectral probe can be just as effective (and just as vulnerable to strong tangential convection) as
the pure spectral method in a constant coefficient problem. SP adapts better than S to normal
convection variation and it adapts perfectly to piecewise constant heterogeneities in the diffusivity.
As a “probe” method, it shares the coding disadvantages of IP.

The Dryja preconditioner is never exclusively the best method, but is as good as either S or SP
in a variable coefficient problem in the limit 2 — 0, where the diffusive contributions to A dominate.
However, the extra cost of S is insignificant compared to D, and SP costs only extra subdomain
solves in the pre-processing, so tliese techniques (suitably stabilized for tangential convection) will
almost always be preferable in applications.

All of the above techniques are relatively insensitive to the choice of the overall preconditioner
structure. The tangential interface preconditioner is an exception, for reasons yet to be explained
theoretically. It is much better under the block triangular form of the overall preconditioner, and
is very competitive with the other techniques under physically predictable circumstances, namely
tangentially dominant convection or narrow aspect ratio. It is also simple to code and has been
successfully generalized to multicomponent systems (see [22]).

We note that when exact subdomain solves are performed, the block triangular form of the
preconditioner, By, with its onc-directional flow of information from the separators to the interiors,
is almost always preferable to the structurally symmetric form By in terms of execution time,
since a full set of subdomnain solves is saved at each iteration and the iteration counts are usually
comparable. The structurally symmetric form is also obviously useful when A is itself symmetric,
since it then admits preconditioned conjugate gradients rather than GMRES as the iterative solver.

Clearly, a user who understands his problem physically and is willing to customize can do well
by choosing among a variety of interface preconditioner modules, perhaps using different ones on
differently resolved grids within the same overall solution procedure. Ilopes of finding a single “best”
method from among those considered must clearly be dismissed, but the field is still young. It is clear
that general purpose adaptivity will require some form of “probing” via subdomain solves; taken to
the limit, one obtains C directly. Such probing has an associated cost comparable to an iteration
step, and must be undertaken conservatively. Future developments which iteratively improve the
interface preconditioning based on accumulated subdomain solve data would be welcome, and so
would more hybrids along the lines of the spectral probe which incorporate both analytical and
numerical data.
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Abstract

In this paper we present a preliminary report on our work on the tracking of inter-
nal layers in a singularly-perturbed convection-diffusion equation. We show why such
tracking may be desirable, and we also show how to do it using domain decomposition
based on asymptotic analysis.

1 Introduction

In this paper we present the analogue of a shock-tracking scheme for the resolution of an
internal layer and its interaction with an ordinary boundary layer at the outflow. In the
computation of compressible flows at high Mach number there has long been competition
between shock tracking and shock capturing, and it is now generally agreed that both are
needed. We generally find that the number of strong shocks is small, and they should be
tracked in order to assure accuracy of the solution. For reasons of efficiency, however, the
large number of weak shocks reverberating around the domain should be computed by a
reliable shock-capturing scheme such as Roe’s method [14] or the method of Colella and
Woodward [7]. Shocks are not always the most important features in fluid flows, but the
tracking of such other phenomena is still far behind shock tracking. We first show why it
may be desirable to track an internal layer, and then we show how such tracking may be
accomplished via domain decomposition.

For the sake of simplicity we consider a specific time-independent, singularly-perturbed,
convection-diffusion equation

al;u+b3u=cAu+F (1.1)
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on a bounded domain Q in the (z,y)-plane. Here, A denotes the Laplace operator, and ¢
is a small, positive number. For the moment, we impose Dirichlet conditions = f on the
boundary 9, but later we sometimes treat mixed boundary conditions. The function f
is required to be piecewise smooth. (We use the term ‘smooth’ to mean some convenient
degree of differentiability, say C2.) We assume that the coefficients ¢ and b are smooth
functions of £ and y on Q. The source term F is assumed to be a smooth function of
€, ¥, and u. Furthermore, we impose the restriction that |a| + |6] # 0 in the closure of
. This assumption implies that there are no stagnation points, and it greatly diminishes
the complexity of the domain decomposition. Qur assumption of semilinearity is much less
restrictive because nonlinear problems are often solved via a sequence of linear problems
with variable coefficients. Our discussion does not pertain to shock layers, however, since
they violate the assumption of smoothness of ¢ and b. .

Previous work [4], [11], [12] on algorithms for (1.1) using domain decomposition based
on asymptotic analysis has treated the special case of b = 0. It is true that a transformation
of coordinates may be used to convert (1.1) to the case b = 0. In this paper we show why
such a transformation is very desirable, and we present an algorithm to carry it out.

The development of numerical methods for (1.1) in the singularly-perturbed case requires
an understanding of the asymptotic behavior of its solutions as ¢ | 0. We therefore begin
with a brief description of the relationship between u and the solution U of the reduced
equation

a8,U +b8,U = F. (1.2)

For more details see the books by Chang and Howes [1] and Eckhaus [8]. Equation (1.2) is
easily solved by the method of characteristics,

dz dy dUu

ds = a, E = b, ds =F. (13)
The first two equations in (1.3) define characteristic curves. It is clear that we cannot
impose the boundary condition U = f at every intersection of a characteristic curve with 8.
Instead, we subdivide 9 into three sets, depending on the direction of the vector (a,b). The
inflow boundary T is the subset of 9Q on which (a, b) points into 2, the outflow boundary T
is the subset of 90 on which (a,b) points out of §2, and the tangential boundary T'r is the
subset of € on which (a,b) is tangent to Q. For (1.3) the boundary condition U = f is
imposed only on the inflow boundary I';.

It is reasonable to expect to have u = U for the solutions u of (1.1) wherever Au is not
too large, i.e, wherever u is smooth. Because of the smoothness of the source term F and
of the coefficients a and b, the only mechanism for introducing nonsmooth behavior into the
solution u of (1.1) is through the boundary condition u = f. One obvious difficulty is that
we cannot force U = f on the outflow and tangential boundaries I'o UT'y. The resolution of
this difficulty is that there are boundary layers across which « changes rapidly from v ~ U
to u = f. More precisely, when f is smooth the relation u & U is true except in the following
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portions of 2. There may be what are called parabolic boundary layers along the tangential
boundary TI'r, and there may be ordinary boundary layers along the outflow boundary T'o.

Let us take a moment to explain the terminology ‘ordinary boundary layer’ and to de-
scribe its properties. Consider a point P on I'g. In the vicinity of P we may construct a
transformation (o, 7) — (z,y) such that the origin (o,7) = (0,0) is mapped to the point P.
We may further require that the portion of a neighborhood of the origin with ¢ > 0is mapped
into {1, so that a segment of the axis o = 0 is mapped onto a segment of the boundary I'o.
In terms of the variables o and 7 the differential equation (1.1) takes the form

G3,u+b0u = e(c; u+ ¢y 8,0,u + c39%u) + F. (1.4)

Note that the definition of outflow boundary implies that if ¢; is chosen to be positive, then
it follows that @ < 0. We have seen that we expect to have u =~ U away from the boundary
o = 0, while we require that « = f on the boundary ¢ = 0. That is, we expect u to vary
slowly with respect to 7 but rapidly with respect to o. Let us therefore introduce the scaling

o = €7, T=7F (1.5)

into (1.4). If we formally discard all but terms of the order of 1/ €, we obtam a reduced
equation : ST ' -
a@aV =g BgV. ' (1.6)
The term ordinary boundary layer derives from the fact that (1.6) is an ordinary differential
equation. The term exponential boundary layer is also used, because the solution V of (1.6)
is the sum of a constant and an exponential function. Note that because @/¢; < 0, this
exponential decreases with increasing &. Note also that in terms of the variable o the rate of
decrease is of the order of exp {—«o/e}, where & is an average value of [|/c;. We therefore
expect the width of the ordinary boundary layer to be O(e). . The book by Chang and
Howes [1] gives theoretical justiﬁca.tion for all of these heuristié manipulations.

In the v1c1mty of the tangential boundary I‘T we use the characteristic curves (1.3) to
define one set of coordinate lines, and we use them as the foundation for a local ma.ppmg’

(s,t) — (z,y) in the v1c1mty of a pomt PonTz. In terms of these coordinates (1.1) takes

the form

We remark that the deﬁmtlon of flow direction 1mp11es that cg > 0. We may require that a
segment of the axis £ = 0 maps onto a segment of the boundary T'r and that positive values
of t correspond to points in the interior of Q. Thus, the boundary layer has to accommodate
a rapid transition from v ~ U for ¢t > 0 tou = f at ¢t = 0. Let us therefore introduce the

scaling-

63W = ¢4 agw + F. | (1.9) :
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This equation is parabolic, giving rise to the term parabolic boundary layer. Furthermore,
the thickness of the boundary layer for (1.9) is O(1) with respect to . With respect to ¢
the parabolic boundary layeris therefore of width O(y/¢). Again, theoretical justification for
these remarks may be found in [1].

If f has a discontinuity at a point P on I';, then by (1.3) the function U will have a
corresponding discontinuity in € along the characteristic curve 4 through P. Similarly, if
the Lie derivative of f along I'y is discontinuous at P, then grad U is discontinuous along 7.
Because u is smooth, the lack of smoothness of U causes u to deviate substantially from U in
a neighborhood of 4. Asin the case of a parabolic boundary layer, if we introduce coordinates
(s,t) derived from the characteristic variable s as given by (1.3), we find that (1.1) maps to
an equation of the form (1.7) and that (1.9) is the appropriate reduced equation. We are
therefore led to the conclusion that such an internal layer is parabolic in nature and that its
width is O(4/€). We again refer the reader to [1] for further justification.

In the next section we analyze the behavior of a standard central difference scheme when
there is an internal layer tilted at an angle to the grid, and we show that the numeri-
cal approximation introduces downstream oscillations unless the internal layer is resolved.
Therefore, we must use either a fine grid, an artificial increase of the viscosity ¢, or a grid
aligned with the layer. Here we are discussing a grid effect, in [13] Hedstrom and Osterheld
showed that the numerical errors for a coarse grid aligned with an internal layer are minimal
even at large cell Reynolds numbers.

In Section 3 we present an algorithm for the construction of an orthogonal grid with
one coordinate direction aligned to the vector field (a,b). This mapping requires the solu-
tion of the telegraphers’ equation. In Section 4 we introduce a domain decomposition for
a problem (1.1) with an internal layer and an ordinary boundary layer. In this domain de-
composition the ordinary boundary layer and the internal layer have their own subdomains,
and there is a separate subdomain for the region where these layers interact. In addition,
in each subdomain a separate numerical method is used, depending on the local asymptotic
behavior of the solution.

2 A layer tilted to the grid.

In this section we use a heuristic argument based on the modified equation to show why it is
generally unwise to permit an internal layer not to be aligned with the grid. Specifically, we
show that the standard central-difference scheme has grid effects which are modelled by a
modified equation in the style of Warming and Hyett [16]. See Griffiths and Sanz-Serna [10]
for a more modern exposition on modified equations. We shall see that the solutions of the
modified equation are integrals of Airy functions, multiplied by a decaying exponential. The
oscillations of this Airy function may or may not be completely damped by the exponential,
depending on the values of a dimensionless parameter. We also derive the modified eq.uation
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for the upwind difference scheme, and as may be expected, we find that upwindimg adds
numerical diffusion.

For the discussion here we restrict our attention to the special case when the coefficients
a and b in (1.1) are constant and the source term F vanishes. Then for convection with
velocity V' in the direction (cos 6, sin §) we have the convection-diffusion equation

Vcos8d.u + Vsinf dyu = € Au. (2.1)
The reduced equation for (2.1) is
Vecos80,U + Vsin8d,U =0, (2.2)

and its characteristic curves are given by

dz dy .
E =V cos 0, E = Vsiné. (2'3)

For the discussion here it suffices to restrict our attention to directions 0 < 4 < /4. We
remark that the special case § = 0 of flow parallel to the grid was examined by Hedstrom
and Osterheld [13].

For (2.1) we use a rectangular domain
Q={(z,y):0<z<1,0<y<1}. (2.4)

Thus, under the conditions that 0 < 8 < 7 /4 the inflow boundary is at z = 0 and at y = 0,
and the other two sides of the rectangle comprise the outflow boundary. On the inflow
boundary we select a point of discontinuity ¥, and we impose the conditions

_}0.5(1 + sgn(y —ryo)) forz = 0,
—{0 ) fory = 0. (25)

The dlscontmulty in the boundary data at yo induces an internal layer along the cﬁara.ctenstlc
curve zsin § — (y — yo) cos§ = 0. In fact, the solution U to the reduced equation (2.2) with

boundary data (2.5) is given by

U= % 21 sgn(zsin @ — (y — yo) cos §). . (2-6)

In order to minimize ordinary boundary layers along the outflow bounda.ry, we 1mpose the
reduced equation 2. 2) as boundary condition at z = 1 and at y = 1.

- Consider the standard central-difference scheme for (2.1). We impose a square grid on )
with mesh size h, and we define the shift operators

To(ey)=vlathy),  Tolny)=slmyth. (@)
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With this notation the central-difference approximation to (2.1) is

VcosH(T T- ) +Vsm9

(T, — T;')v = € Dv, (2.8)

where D denotes the discrete Laplacian

1
7
On the inflow boundary I'; the boundary COIldlthIlS for (2.8) are (2. 5) On the outflow
boundary I'o we use an upwind discretization of (2.2).

D= (T-+T,+T;' + T, —4I).

The modified equation for (2.8) is best written in terms of the rotated coordinate system
aligned with the flow direction .

s==zcosf + (y — yo)sind,

t = —zsinb + (y — yo) cos 4. (2:9)

We also introduce scalings of s and ¢ in order to derive a modified equation in dimensionless
form and to identify the pertinent parameters. It happens that for (2.1) or (2.8) on the
halfplane = > 0 there is no natural length scale in the direction of the flow (the s-direction).
One may as well use a length scale L = 1. For the rectangular domain  defined in (2.4) it
is reasonable to take L to be the width of @ (L = 1) or the width of Q in the s-direction
(L = sec). We shall see that the natural scalings for the modified equation corresponding
to the central difference method (2.8) are

s = Lo,
L 1/2 i
t=71 (-—6) . (2 10)
Vv
Furthermore, the important dimensionless parameters for (2.8) are the cell Reynolds number
h
Ry = -—CK (2.11)
and the degree of streamwise resolution
h
= —. 2.12
T=71 (2.12)

In terms of these parameters the modified equation for (2.8) is given by the following theorem.

Theorem. Suppose that 0 < § < 7 /4. Suppose also that v < 1 and that v < R, <
1/4. Then the modified equation for (2.8) is

8,v = 8%v — 5_1_11_2(;0_)71/2122/2 0%v + (—RZZ; + %’1(3 + cos(40))) d%v. (2.13)
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Remarks. The restriction that ¥ = A/L < 1 is reasonable for numerical computations,
since we would want features in the streamwise direction to be resolved. The condition that
7 € Rp < 1/v is also ordinarily satisfied in computations. We have written the modified
equation in the form (2.13) in order to provide uniformity as sin(46) — 0. The grid-induced
oscillations appear only when sin(46) # 0 and when R, is moderately large. (Remember
that we require R,y < 1.) Under the condition that Rj sin(46) is bounded away from zero,
the modified equation (2.13) takes the simpler form

8pv = Bv — %&w—)y‘/mi‘/’ &3v. (2.14)
In (2.14) the parameter
in(46
8= __51“2(4 ) 2 (2.15)

measures the importance of the grid-induced numerical dispersion relative to the physical
diffusion, and no numerically induced oscillations will be observed if 8 is sufficiently small.
For boundary data v = sgn(7) at 7 = 0 the solution of (2.14) may be expressed in terms of
the Airy function, as is shown by Chin and Hedstrom [3]. In fact, a Fourier transformation
with respect to 7 shows that

1 o 1
'U((T, T) o 5 + /:oo z21r

The reference [3] also provides figures and tables of the integrals (2.16) for various values
of 8. The upshot is that whether or not there are oscillations depends on a parameter

201/3
= ——r.
(35)2/3
If a > 2, the diffusion is dominant, and there are no oscillations. For a < 2, however, there

is a sequence of damped oscillations below the layer (7 < 0). Because a is an increasing
function of o, as we proceed downwind o increases and the diffusion eventually removes the

oscillations.

exp {iﬂaw3 —ow? + irw} dw. (2.16)

W

(2.17)

Note with regard to the applicability of the modified equation that the internal layer is
many grid cells wide and that the oscillations have wavelengths spanning many grid cells.
This behavior makes the modified equation applicable, in that the derivation of a modified
equation is based on the assumption that the numerical solution is smooth relative to the
grid. The user of modified equations must always keep in mind that they are utterly useless
in predicting variations in the numerical solution on the scale of 2 or 3 grid sizes or shorter.

Finally, we also remark that the upwind difference scheme

cosd sin @
h h
with the scalings (2.10) has the modified equation

0,0 = a; 0%v + a3 0%v

|4

I-T;Y Y+ V—-o(I- T, )u = ¢Du
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with

a = 1+ % sin(26) cos (-} - 0) ,
a = g+ 1B4(3 + cos(46) + 24(cos® 8 + sin®§)).

The most significant numerical viscosity added by the grid effect is the deviation of a;
from 1. .

Proof of the theorem. The idea of the modified equation is to make an ansatz that
the solution of the difference scheme is smooth enough to be represented by a small number
of terms of its Taylor expansion and to use this expansion to identify a partial differential
equation which approximates (2.8) more closely than the original equation (2.1) does.

Thus, we begin with the assumption that some smooth function v is a solution of (2.8).
In this case the word ‘smooth’ is taken to mean that we may use Taylor approximations such

as
4

T,,v:v-{-hazv—l—h v +%—63 +;46‘v (2.18)
for the terms in (2.8).

That is, we choose to neglect terms in the Taylor series approximation to (2.8) of order
h5 and higher. We therefore obtain the equation

V cos 8 (6zv+ R 9% ) + Vsin @ (Byv + B 93y )
= 6(020+32v+ (34v+34 ))

The rotation of coordinates (2.9) then gives

| = (030 + 3Fu) + ek’ Ll (2.19)

with

Ly[v] = (3 + cos(46)) 83v — 2 sin(49) 820w + ¥ sin?(26) 3,0%v + § sin(40) B},
Lyv] = (3 + cos(46))(0}v + 8}v) — sin(46)(20,v — 8,0%v) + 35in?(26)020}v.



Because we are interested in the eflects of the internal layer, we expect derivatives of v
in the ¢-direction (perpendicular to the layer) to be significantly larger than derivatives in
the s-direction. The scalings (2.10) are selected to balance the terms 8,v and d%v in (2.19).
Thus, upon substituting (2.10) into (2.19) and dropping terms smaller than O(yR}), we
obtain

8,v = 8% — B 0% + -R—azv 428 "(3 + cos(48)) 8%v (2.20)

with 3 as defined by (2.15).

The inexperienced user of modified equations may expect (2. 20) to serve as a modified

equation for (2.8). We cannot use it because the term involving dv renders (2.20) unstable to

high-frequency perturbations. The use of such a modified equation would predict numerical
instabilities where there are none, and it is an instance of a modified equation not conforming
to the difference scheme for phenomcna of short wave length. The term v appears in (2.20)

because we stopped the Taylor expansion (2.18) at J}v, and we went that far - because the

coefficient B of 8%v in (2.20) is zero when sin(44) = 0. That is, we must replace 0% by
something reasonable but harmless when 8 is near zero, and for other values of 8 it need
only be something harmless. Because 8,v = 02v when ﬁ ~ 0, the substitution we make to
render §%v harmless is that d}v & @%v. In this way a high-frequency instability is converted
into an increase of dissipation in the streamwise direction, and it produces our modified
equation (2.13). (This trick was also used in [13] in the special case § = 0.)

Remarks to mathematicians. The above argument contains some sleight of hand.
In particular, the domain 2 was replaced by the halfspace s > 0 or, equivalently, o > 0.
This change removes any ordinary boundary layer which may be present at the outflow.
In addition, boundary data for (2.13) are to be applied at the rotated boundary s = 0.
We expect these distortions to introduce discrepancies only near the point of discontinuity
(z,y) = (0,%). In particular, it appears from our computations that there needs to be
a slight shift of coordinates. See the comments concerning Fig. 1 below. We have also
not shown that the solution of the modified equation (2.13) bears any resemblance to the
solution of the difference scheme (2.8). Such a proof would probably proceed as in [13] with
the replacement of § by the halfspace = > 0, followed by a Fourier transformation of (2.8) in
the y-direction. The modified equation (2.13) shows that the canonical form of the integral
representation of v is

v(o, 7)== +/ exp {zasw — aw? + zalw} dw (2.21)
with f and the a; dependent on o and 7. Furthermore, the integral (2.16) indicates that
f=1,a3~ f0o,a; = 0,and ¢; ¥ 7 when 0 > 1 and |r| < 1. The integral (2.16) derived
from the modified equation (2.14) is merely a nonuniform asymptotic approximation which
is valid when || < 1, ¢ > 1, and when # is bounded away from zero. We see from the form
of (2.21) that a umform asymptotlc estimate would require investigation of the interaction of
two saddle points and a pole. For the case when sin(48) = 0 the situation is simpler because

o 121r
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a3 = 0 and there is only one saddle point and a pole. Uniform asymptotics for § = 0 are
presented in Hedstrom and Osterheld [13].

A computational example. In our computations to illustrate these oscillations we
located the point of discontinuity at yo = 0.25, we chose coefficients

Vcost = 2, Vsing =1, e = 0.002,

and we used a mesh size of b = 0.02. This gives a cell Reynolds number of moderate size
R, = 10/5, and with L = 1 it gives v = 0.02. The scaling (2.10) is therefore /Le/V =~
0.0946, and the value of 8 in (2.15) is # ~ 0.598. The cross section at # = 0.8 is shown in
Fig. 1, where the solution to (2.8) is shown as a solid curve and the Airy integral (2.16) is
given as dashes. We must admit that in order to obtain such a good match of the curves,
we had to shift the jump for the Airy integral from y, to yo + k. This could be because the
Airy integral applies to the rotated coordinate system (s,t) given by (2.9). It shoulq also be
noted that there is a phase difference between the two curves in the oscillatory region. This
is a well-known deficiency of modified equations, and it results from the nonuniformity of
the asymptotic approximation. At the point (z,y) = (0.8,0.6) near the overshoot the value
of the parameter o given by (2.17) is a & 1.294. We have oscillations because a < 2.

The numerical method we used to solve (2.8) is a combination of ideas from Elman
and Golub [9] and from Chin and Manteuffel [6]. As in Elman and Golub, we introduce
a red-black ordering on the grid points and do a cyclic reduction to obtain a nine-point
scheme on the black grid points. This reduction produces a matrix much better conditioned
for iterative methods. The iterative method used by Elman and Golub is point Jacobi,
mostly because they impose no constraints on the direction of flow. In our example the
flow is one-directional, so we follow Chin and Manteuffel in using line Gauss-Seidel with
lines transversal to the flow, starting at the inflow boundary and marching downstream. We
find that this scheme converges very rapidly, with the greatest speeds at high cell Reynolds
numbers. (Perhaps, we should reiterate that the point of this section is to show that rapid
solution of the matrix equation should not be the primary objective—its solution is a poor
approximation to the solution of the differential equation when the parameter 8 in (2.15) is
large.)

Let us remark that we have also solved (2.8) in a version with a discrete approximation
to Neumann outflow boundary conditions

Ou=0 forz=1,

Oyu=0 fory=1. (2.22)

We found this boundary condition to be satisfactory only for small cell Reynolds number,
Ry < 5. Otherwise, there are additional small oscillations with period 2A induced by the
mismatch at the outflow boundary z = 1.
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Fig. 1. Airy oscillations.
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3 Curvilinear coordinates. .

In this section we permit the coefficients a and b in (1.1) to depend on the position (z,y),
and we present a numerical algorithm for generating an orthogonal coordinate system (a
chart) aligned with the given vector field (a,b). Our coordinate system is derived from the
characteristic curves. We remark that a somewhat different coordinate transformation based
on characteristics was given by Chin et al. [5].

We again assume that the vector field (a,b) has no stagnation point, so that |a| + |b] is
bounded away from zero for all (z,y) in . For purposes of constructing the mapping, it
is convenient to do an initial scaling so that ¢ + b = 1. One of our goals is to set up a
mapping (s,t) = (z,y) such that s follows the flow in the sense that there exists a positive
function ¢ for which

8 = $(ad. +53,). (3.1)

Because the vector (—b, a) is orthogonal to (a,b), the orthogonality requirement (our second
goal) amounts to the condition

8 = p(—bd, + ad,) (3.2)

for some positive function 4. In a moment we show that the scale factors ¢ and 1 are not
arbitrary.

In part, the construction of such a mapping is easy, because it is easy to integrate (3.1).
All that is needed is to pick a convenient starting point (zg,yo) and to integrate the system

d
-—fzad), Tz =129ats=0,
ds (3.3)
Y
— = bo, y=1yoat s=0.
ds
This gives a curvilinear coordinate line in Q corresponding to a constant value of ¢. The
image of a line s = constant may be obtained similarly by integrating

d—mz—b¢v, T==xoatl=0,
g; (3.4)
d_t:_ad), y:yoattz().

We still must ensure global consistency as follows. Let us traverse the edges 'of the
curvilinear rectangle so < s < 8, to <t < ¢;, and we assume that this rectangle is contained
in Q. Denote the image of (so,%) as the vertex A. Suppose further that we integrate (3.3)
from s to sy, arriving at the vertex C. We then integrate (3.4) from ¢, to ¢, and arrive
at the vertex B opposite A. Let us now reverse the order by first integrating (3.4) from £,
to {, to arrive at the vertex D and then integrate (3.3) from s¢ to s;. Can we be certain
that we again arrive at the vertex B? It happens that this global consistency question has
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been answered [15], and that what is required is the vanishing of the Lie bracket [,,8;] =
0,0; — 0.0,.

It is easy to see by a short computation that the vanishing of the Lie bracket [3,,8,] is
equivalent to the system of partial differential equations

di(ap) = 0,(b9),
0,(bp) = —0i(agp).

Upon differentiating the products in (3.5) and solving for 8, and 0,4, we find that a
necessary and sufficient condition for consistency is that

(a2 + b2) 8,9 = $(a b — bB,a) — (a dya + b,b),
(a? + b?) Oy = —(a Bya + bOb) + 1p(bB,a — a d,b).

Note that if (a,b) has been scaled so that a? + 4% = 1, then (3.6) takes the simpler form

(3.5)

(3.6)

0,% = ¢(a8;b — bd,a),

8¢ = p(bB,a — a 8,b). (3.7)

We recognize the system (3.7) as the telegraphers’ equation, written in terms of Lie
derivatives along the characteristic curves. Therefore, all that is needed for its solution is to
prescribe values ¢ = 1 at ¢ = 0 and ¥ = 1 at s = 0 and to march in the s and ¢-directions
concurrently.

It should be emphasized that theoretical questions remain for this grid-generation scheme.
In particular, there is no guarantee that the solutions ¢ and ¢ will be positive at all points
in . This is important in that the Jacobian of the transformation (3.3-4) is given by
J = (a?+b%)¢yp. We required at the outset that a®+ b? be bounded away from zero. Thus, if
we are to maintain a nonzero Jacobian, we must take special measures whenever it happens
that ¢ < 0 or ¥ < 0. One possibility is to back up and put a boundary on this local chart.
We could then initialize a new chart and continue.

4 Domain decomposition for an internal layer.

In this section we present a computational example which uses domain decomposition to
resolve an internal layer. At this point we have not yet implemented the algorithm described
here, but the final report will have computations. In our algorithm we first identify the
internal and boundary layers, and we then set up a domain decomposition to segregate
them. The domain decomposition is carried out with overlapping grids using the tools of
Chesshire and Henshaw [2]. We have added the modification that in some subdomains we
use the grid-generation algorithm of Section 3.
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As our domain  we use the square 0 < £ < 1,0 < y < 1, and on 9 we consider the
convection-diffusion equation

(14 2)0u+(1-y)0u=eAu. (4.1)

As boundary conditions for (4.1) we prescribe u = 0 on the bottom of @ (y = 0), u =1 on
the left-hand edge (z = 0), v = 1 on the top (y = 1), and v = —1 on the right-hand edge

(z =1).

Note that in (4.1) we have chosen coefficients so that there is no turning point in . That
is, we have |1+ z| + |1 — y| bounded away from zero in f2. Note also that by the discussion in
Section 1 the inflow boundary I'; consists of the bottom y = 0 and the left-hand side z = 0
of the square (2. Furthermore, the top of the square y = 1 is a tangential boundary I'r, and
the right-hand edge z = 1 is an outflow I'p. The reduced equation is '

(1+2)8,U + (1 -y)d,U =0, " (4.2)

and its boundary conditions are imposed on the inflow boundary I';. It so happens that
we can write down a formula for the solution U of (4.2), although this is not necessary for
our domain-decomposition algorithm. The characteristic curves for (4.2) are the hyperbolas
(z — 1)(y + 1) = const. Thus, the solution of the reduced equation (4.2) is

1 ify>e/(z+1),
U_{O fy<z/(z+1).

This gives us an internal layer along the hyperbola y = z/(x + 1) and exponential boundary
layers at the outflow boundary =z = 1. It happens that we imposed boundary data along
the tangential boundary I'r such that no boundary layer resides there. If there had been a
boundary layer along I'r, we could have modified the domain decomposition described below
so as to include its effects.

As the problem is stated, we need the following subdomains: (1) a square B of diameter
O(€) at the origin to cover the birth of the internal layer, (2) an internal-layer region

I={(z,y):ly — 2/(z + 1)| < Cex}

with O(e) < z < 1-0(e), (3) three outflow boundary layers O, one above the internal layer,
one below it, and one interacting with it, (4) an outer region H above the internal layer on
which u ~ 1, and (5) an outer region H below the internal layer on which u ~ 0.

In the two outer regions H we use a coordinate system derived from the characteristics, as
described in Section 3. In the internal layer 7 we use a parabolic coordinate system imposed
on the characteristics. (More precise details will be given in the final report.) Finally, in the
birth B and boundary-layer regions 0 we use the methods given in the papers by Hedstrom
and Howes [11] and [12]. The iterations are performed in the order: (1) the outer regions X,
(2) the birth region B, (3) the internal layer Z, (4) the outflow boundary layers O. The
iterative schemes in the subdomains are as in [11] and [12].
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Abstract

Interface conditions for coupling the domains in a physically motivated domain
decomposition method are discussed. The domain decomposition is based on an
asymptotic-induced method for the numerical solution of hyperbolic conservation laws
with small viscosity. The method consists of multiple stages. The first stage is to
obtain a first approximation using a first-order method, such as the Godunov scheme.
Subsequent stages of the method involve solving internal-layer problems via a domain
decomposition. The method is derived and justified via singular perturbation tech-
niques.

1 Introduction

This is a report on a preliminary investigation of conditions for the interfaces between sub-
domains when solving partial differential equations. The analysis for the method is a combi-
nation of asymptotics and numerical analysis. The result is a physically motivated domain
decomposition method where different partial differential equations may be solved in different
domains. Since different modeling equations are in different subdomains for the same prob-
lem, we call this heterogeneous domain decomposition. The numerical treatment of interface
conditions between the subdomains must be addressed. The approach here is to examine
the physics reflected in the numerical method used within the subdomains and guarantee
that this same physics is reflected in the interface treatment. '

The method is best suited to partial differential equations that contain regions of singular
behavior. A typical situation is when there are narrow regions where the variation in the
solution is large. Such regions are called boundary layers or transition layers depending on
whether they are near a boundary or inside the interior of the domain. Examples of such
situations are laminar flow of a slightly viscous fluid or combustion with high activation
energy. Classical schemes applied to these types of situations generally fail to correctly
describe the behavior inside the layers. This difficulty is overcome by utilizing asymptotic
analysis that reflects the physics of the problem. Here we present and motivate the domain
decomposition method, but the details of the analysis are presented elsewhere [7].

There have been some intersting results regarding interface conditions for heterogeneous
domain decomposition where Euler equations are coupled with Navier-Stokes equations (9],

1Research conducted at ICASE, NASA Langley Research Center, Hampton, Virginia, supported by NASA
Contract No. NAS1-18605.
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and where viscous and inviscid equations where coupled [2, 4]. Many of the basic ideas
relating to asymptotic analysis and numerical methods that utilize domain decomposition are
found in [10]. These ideas were incorporated into a parallel numerical method in [5]. Specific
application to conservation laws have been developed in [1]. There are other important works
in these areas—these references are only a small sample of the literature.

The coupling of the problems in the subdomains is based on a balance of the flux across
the interface. Each subdomain is treated as a control volume, and the flux into and out-of
the control volume is balanced. This is similar to the flux-differencing methods used within
the subdomains. The result is a numerical method with no visual artifacts. This numerical
treatment of the interface is an extension (to heterogeneous domain decomposition) of the
work by Osher and Saunders [11]. We expect extension of this method for the interfaces to
work for two dimensional heterogeneous domain decomposition, since it was used for a two-
dimensional homogeneous domain decomposition method that utilizes adaptive refinement

8].

2 Problem Setting and Domain Decomposition Mo-
tivation

Consider the Cauchy problem

W 2P(U) = e (P(U)YZ) for (a,t)€Q
(2.1)
U(z,0) =V(z) for ze€lR.

Here the solution U € IR"™ is a vector-valued function with n components, the domain is
! = IRx]0,T[ and € << 1is a small parameter.

We assume that V is piecewise smooth. We also assume F and P are regular functions
of U. We suppose that P is a suitable viscosity matriz [3] for the shocks of the associated
inviscid problem

W+ EF(U°) =0 for (z,t)€Q
(2.2)
U%z,0) = V(z) for z€cIR.

Namely, a shock-wave solution to (2.2) can be obtained as a limit of progressive wave solutions
of (2.1). Problem (2.1) is a parabolic-hyperbolic singular perturbation problem driven by
2.2).

( '}‘he regions where the solutions to the associated inviscid problem fail to be good ap-
proximations to the solution of the full problem are the regions where we use a subdomain
to localize the behavior of the solution. Thus, we have two types of domains. The first type
of domain is located where the regular expansion ’ i

et = U° + U + €U + ... . (23)
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2.1 Problem in the Singular Region

for U is valid and the solution 1s smooth. The second type of domain is where the solution
exhibits singular behavior and the regular expansion for U is no longer valid.

We substitute U2™" in the differential equation of (2.1) and use identification in € to
obtain that U° must be a solution of (2.2). The inviscid problem (2.2) has many weak
solutions; it is possible to uniquely define U® by considering the problem that governs U?

[7].

The failure of the regular expansion is reflected by some of the terms in the PDE governing

U°® being significantly larger than other terms. Typically, the term RHS(U®) will become

unbounded as the small parameter ¢ tends to zero. For finite ¢, a large RHS(U®) would
indicate that the region should be covered by a subdomain in which we apply techniques
designed to capture the singular behavior of the solution. We describe how to use a measure
of the numerical approximation of RHS(U®) to place the subdomain boundaries i ina later
section of this manuscript.

So that we can handle the regions where solutions to problem (2.1) contain shocks that
interact with other singularities we use a brute force approach that will ca.pture all possxble

behavior of the solution. The approach is to use the coordinate system

r

{ =— T
€

¢
€

in the regions with shocks. We will present and motivate the domain decomposition method,
but the details of the analysis are presented elsewhere [7, 6]. Under thls transformation the
PDE that governs the solution becomes

a0 8 .. 8 (- 00 :
—67+BEF(U) ae (P(U) ag) (24)

where U(ﬁ, )= U(x t). This is the equation that is solved in the singular region.

This scaling is most appropriate for regions where shock-layers are interacting with other

non-smooth physical phenomena. Because the transformation a priori resolves all of the
physics. This is reflected by all of the terms in (2.4) having magnitude of order unity or
smaller. In general, this method is overkill, similar to using a shotgun to dispatch a housefly.
We choose to study only this brute-force approach so that we concentrate on one type of

interface. Other treatments that include more of the physics are possible [7]. They can result
in more efficient numerical methods than the one discussed here.

The boundary condition at the interface is to impose that the viscous equation from

problem (2.1) be the model at the interface between the subdomains. The computational
implications of this condition is discussed in §4.
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3 Conservative Discretizations

It is important for the discretization techniques to satisfy a discrete conservation relation.
One can verify that if the discretizations can be written in the form

zf"'l = zf — A(Il,’.*_l/z - hi—l/Z)!

then the method satisfies the appropriate conservation relations. Here we use flux differencing
methods based on a finite-volume formulation of the problem.

We will discuss the differencing method for the outer region subdomain where the solution
is smooth first. Let Wy be the discrete numerical approximation to U°. We use a first-order
finite-volume method. This method assumes that the value W§; is an approximation to the
average of the desired function U° over the spatial interval |z;_y/s, ;1172 at time t = kAt.
The method can also be categorized as a fluz differencing technique since the general form
of the discrete analogue to the original PDE can be written

Woil' = Wo, = M(Fh = Flap) : (35)

where
1'11";1/2 ~ F(Wcti ;—1/2)'

Here the fluxes are based on the first-order Godunov scheme; thus, the flux f; for com-

ponent w; of W, is approximated as

1
v = 3 [fj(W(f,;) + fi(Weipy) — ai(Wyips — Wj,,-)] (3.6)

where «; is an approximation of the upper bound on the local speed of sound.

The discretization that is used for the numerical method in the shock-layer region is
a modification of the treatment used for the outer region. We have used a coordinate
transformation that creates a smooth problem for this subdomain. Let W, be the first
order numerical approximation to U. Let W({“; be an approximation to the the average of

the desired function T over the spalial interval 1€ 1/20&i41/2) at time 7 = kEAT. The flux
differencing technique is

W;EH = V.Vlfc . ’-\(F{il/z - F.'ZE-1/2) (3.7)
where .
_ oW
k ~ T3 1+1/2
By ™ FWE ) T

The particular discrete form for each component of the flux is obtained using a formula
similar to that of Equation (3.6).

We are not restricted to this particular numerical discretization; however, the numerical
treatment of the interface will possibly need to be modified for different numerical treatments
of the problems within the subdomains.

One can verify that the flux differencing methods given above satisfy the discrete con-
servation relation. What remains is to formulate the conditions at the interface so that the

relation will be satisfied globally.
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4 Treatment of the Interface

Using the shock-layer coordinates with A¢ = C Az will result in C/e points in the shock-
layer for each point in the outer region. Here, a typical value for € is .01; hence, this results
in a radical grid refinement for the shock-layer. For the numerical method, since there will
be many grid points in the shock-layer for each point in the outer-region, we will refer to
the shock-layer grid as the refined grid, and the outer region grid will be called the coarse
grid. The temporal coordinate will also be stretched, resulting in the situation outlined in

Fig. 4.1. .
Ti-1/2 Tit1/2 )
17
TK -1
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time T
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Figure 4.1: Interface at the left boﬁndary

4.1 Flux Treatmgnt of VInterface

As in 7[11], we view the interface trealment as a prediéior-cérfech; method on the coarse

mesh. We start at time ¢ = ¢*. The coarse-grid values are defined everywhere, and are the
average of the corresponding fine-grid values when the coarse-grid volume element is within
the fine-grid region.

The steps for the first order method are outlined in Algorithm 1 below. At time step

k, the shock-layer has N(k) points in the interior of the region and a ghost point on each- -
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Fork=1,....

I. March Wy from #;_; to t; based on scheme (3.5).
I1. Detection.
A. Compute the residual on the coarse mesh.
B. Mark regions that should be refined. (Let this be the region between z;,_;/2
and z;,41/2.
A. Modify shape of refined region.
ITI. March the shock-layer region from ¢, to ¢xy,. For E=1to K

1. Form the initial condition in newly refined regions.

9. Use linear interpolation to compute the ghost values of W}
3. March W, to r;,, based on scheme (3.7).

IV. Project W, onto Wo.

V. Correct values W&L and W¢p based on the shock-layer fluxes.

ALcoriTHM 1 Numerical Method.

side of the refined region. There are a few points that need to be clarified in this algorithm.
The interpolation to obtain ghost values (i.e. W(f'ﬁ) is bi-linear interpolation based on Wé;l,
Wé‘:zl_l and W&L_l. The initial condition for this problem is derived by imposing mass
conservation; thus, the fine-grid values are all initialized to the value of the solution at the
cell center. Improvements in the initialization procedure is a subject of further research.
The correction of the coarse-grid values in Step VI is to use the same discretization that
was used when the values were originally computed, but to modify the fluxes at the boundary
of the domain to reflect what happened on the refined region. That is, to update ng Ly We
would use scheme (3.5) with (3.6) for F}f:;/z, but we would compute Ff;{/z with the formula

k-1 1 R ok
FL;1/2:—I€Z 1?6.
k=0

One may verify that this results in a globally conservative method. Also, this treatment
of the boundary is consistent with the boundary conditions imposed in §2.1. Namely, this
treatment of the interface is consistent with the viscous equation from problem (2.1) being
the model at the interface between the subdomains.

4.2 Dirichlet Treatment of Interface

As a comparison to the flux boundary condition, we also implemented the heterogeneous
domain decomposition method with dirichlet boundary conditions at the interface. This
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is an interesting comparison, since there was little difference in the results when the two
different treatments of the interface were used (this is discussed in §6).

5 Detection of Interface

We present the detection of the interface for the sake of completeness. Detection of the
interface based on computational data results in a method that can havea different location
of the internal-layer subdomain for each time step. The detection for the numenca.l method
is based on obtaining an approximation to

oWy  OF(Wo) 0 We)
o6 " ox KE (P(W") EE )

This term is the residual from 1 usmg Wy as an approximation to the solution of (2.1). The
residual is of magnitude O(Az~!) in either a shock layer or in a zone where a. shock interacts
with other singularities. '

It is also possible to use an approximation of the viscous term p 2Wo( tk) to localize
some of the singularities. For example, this viscous term will be of order O(Az+1) in a
shock layer or in a zone of interaction. This method is not as reliable as using the residual,

however. Other types of behavior can be located and identified using these techniques [7]. -

6 Apphcatlon to the Isentroplc Gasdynamlc Equa—

N tions

In thls sectxon we examine ¢ the interface treatments on the viscous 1sentrop1c gasdynamlc
equatlons : o :

ot oz

o_ 01y 0 (o
ot Oz \uw/ 0z \0z/)"

Here u is the inverse of the density and v is the velocity, These equations are obtained from
the conservation of mass and momentum in Lagrangian coordinates assuming that u is equal

to the pressure. ralsed to the —1/7th power (the perfect gas law) The experiments were run

with v = 2.2

The problem is a nght travehng shock mtcractmg w1th and a left traveling rarefactxon,r

nating from the ongm) to the mv1sc1d isentropic gasdynarmc equations is glven by

-2/(v+1)

u(z,t) = 40+ (%) (6.8)
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v(z,t) = i aing (E

1 .
¥H1 .

po— t) + const. (6.9)

An initial condition with a shock and rarefaction eminating from the origin is constructed by

connecting left values to middle values with a rarefaction. The middle values are connected

to the right values with a shock. Thus, the initial condition is given by

_J UL, forz <0

u(xz,0) = { Un, forz > 0 (6.10)
) Vi, forz <0

v(z,0) = { Vi, forz>0 (6.11)

where
Ur = 1.4709, Ugr = 2.5000, Vi = 1.0388, Vs = 0.8050.

The middle value of the solution between the shock and rarefaction is (Upr, Vir) = (1.973,1.356).
We remark that the middle values were was chosen using the Rankine-Hugoniot condition
Vi - Ve 1JUR —1/Uy

: Up—Unw  Va-Vu
We expect the the viscous perturbation to have little or no effect on the speed at which
shocks and rarefactions travel; thus, we will compare the viscous solutions to the solutions
given above.

The method was run with € = .01. The discretization parameters for numerical solution
in the outer region have CFL number At/Az = .1, and Az = .02. The discretization on
the scaled coordinates inside the shock-layer is based on A{ = .1, with the CFL condition
At/A¢ < .025 and the stability condition Ar/A¢? < .1. These values are well within the
limits imposed for the stability of the finite difference methods.

Figure 6.2 depicts the evolution of the internal-layer subdomain when the two differ-
ent boundary conditions are used. The errors generated by using the dirichlet boundary
condition when the rarefaction is trying to exit the internal-layer subdomain result in a
larger computed second derivative, and the detection scheme kept the rarefaction inside the
internal-layer much longer. The solution projected onto the coarse grid at the end of the
computations showed little difference between the two methods (Fig. 6.3). The primary dif-
ference is the visual artificats at the boundary of the internal-layer subdomain at the point
when the rarefaction is exiting the subdomain (Fig. 6.4).

7 Conclusion

Clearly the best interface condition is the flux-based treatment; however, the dirichlet bound-
ary conditions did not induce as many errors as expected. One explaination of the lack of
errors may be that the internal-layer subdomain boundary moves fast enough that waves
propagating out of the internal-layer subdomain are allowed to pass across the bbundary
by the oscillations in the boundary. More studies are planned with the goal to identify the
precise nature of the errors associated with the interface treatments.
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Figure 6.3: Solution on Coarse Mesh at ¢ = .24.
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Solutions at t = .16 (Flux)
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Prognostic numerical models for atmospheric and oceanic circulations require initial
fields, boundary conditions, and forcing functions in addition to a consistent set of par-
tial differential equations, including a state relation and equations expressing conservation
of mass, momentum and energy. Depending on the horizontal domain to be modeled, the
horizontal boundary conditions are either physically obvious or extremely difficult to specify
consistently. If the entire atmosphere is modeled, periodic horizontal boundary conditions
are appropriate. On the other hand, the physical horizontal boundaries on the entire ocean
are solid walls. Obviously, the normal velocity at a solid wall is zero while the specification
of the tangential velocity depends on the mathematical treatment of the horizontal viscous
terms. Limitations imposed by computer capacity and cost, as well as research interests,
have led to the use of limited area models to study flows in the atmosphere and ocean.
The limited area models do not have physical horizontal boundaries, merely numerical ones.
Correctly determining these open boundary conditions for limited-area numerical models has
both intrigued and frustrated numerical modelers for decades.

One common approach is to use the closed or solid wall boundary conditions for a limited-
area model. The argument given for this approach is that the boundary conditions affect
flow near the walls but that none of these effects are propagated into the interior. Therefore,
one chooses a big enough domain that the central region of interest is not corrupted by the
boundary flow. Research in progress to model the North Atlantic circulation (J. D. Thomp-
son, private communication) vividly illustrates the pitfalls of this approach. The area covered
by the Atlantic Ocean model lies between longitudes 0 and 100W and between latitudes 60N
and 20S with the continental boundaries in place as appropriate and the open water bound-
aries artificially closed. Two model runs are compared: (A) The southern boundary at 20S
between latitudes 0 and 40W is artificially closed and (B) the same boundary is specified
as open with an inward transport of 15 Sv (determined from a global model with the same
physics) uniformly spread across the boundary. Comparison of runs A and B shows sig-
nificant differences. For example, the maximum eddy kinetic energy (divided by the mean
density) is 700 cm?/sec? in run A while that for run B is 1900 cm?/sec?. The Gulf Stream
in run B detaches from the eastern boundary of the United States at the correct latitude
of approximately 40N while the Gulf Stream in run A never truly flows along the eastern
boundary of the United States at all. The circulation in the tropics and along the eastern
boundary of South America also differs radically between the two runs. There are regions
in the two runs where there is no difference but such regions are small and of little interest,
i.e. they have very low eddy kinetic energy. These studies and others indicate that the inte-
rior flow of limited-area models can be dramatically affected by the incorrect use of closed
boundary conditions.
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A second common approach is to “nest” the limited-area model inside of another nu-
merical model which covers a much larger domain. The outer domain model then supplies
the boundary conditions at the open boundaries of the inner domain or limited-area model.
As an example, the North Atlantic model described above could have boundary information
supplied by a global ocean model which has physical, solid walls or closed boundaries. The
outer domain model usually has a larger time step and coarser mesh size than the inner
domain model. If the inner and outer domain models are described by the same differen-
tial equations and assumptions, then the nesting problem is homogeneous. Otherwise, the
nesting problem is heterogeneous. The nesting is described as two-way if information passes
from the outer domain to the inner domain and vice-versa. If the outer domain model passes
information to the inner domain but the inner domain information is not passed into the
outer domain, then the nesting is one-way. Only one-way nesting with a homogeneous sys-
tem of numerical models is presented here although future work with two-way (or coupled)
nesting and with heterogeneous model systems is planned.

In general, nesting involves two separate problems. The first is the interpolation of
information from a coarse mesh, outer domain, to a finer mesh, inner domain, The second
is the modification of the information supplied by the outer domain before it is app'l_i:gd to
the boundary of the inner domain. Much of the research done to date has not distinguished
between these two separate problems. o o o ‘

Linear interpolation is the easiest interpolation method to use. However, linear interpo-
lation alters the long wavelength information contained in the original fields and adds short

wavelengths that are not present at all in the original fields. Thus, linear interpolation alters

the energy distribution of the original fields. To avoid these problems, a variation of the
resampling method commonly used by engineers in the time-frequency domain (B.E. Eck-
stein, private communication) has been tested. A fast Fourier transform (D.N. Fox, private
communication) has been modified so that the output fields, after the inverse Fast Fourier
Transform, have the required fine grid mesh, although the input fields were supplied on the
coarse grid mesh. After testing, this technique was modified (A. Wallcraft, private com-
munication) to handle irregular coastal geometry, which also has to be interpolated. This
interpolation scheme has been used extensively with the Pacific Basin numerical models to
avoid the lengthy and expensive new spin-ups required whenever the mesh size is changed.
(Further discussion of the Pacific Basin research can be found in Hurlburt et al. [1]).

The effects of changing the mesh size are similar in many ways to those found by changing
the coefficient of horizontal eddy viscosity, Ap. Therefore, in order to avoid interpolation
effects, the open boundary conditions are studies using models with different coefficients of
horizontal viscosity. There are three model runs to be considered here. The applied run is
made with the large outer domain and with a large value of Ay. The nested run is made
with the small inner domain and a small value of Ayg. The true run is made with the large
outer domain and with a small value of Ay. The boundary conditions applied on the open
boundaries of the small domain are taken from the matching grid points on the outer domain
and “adjusted” as described below.
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The numerical ocean model used for both the inner and outer domain is a reduced
gravity, one active layer, primitive equation model with the hydrostatic approximation used.
The fluid is assumed to be incompressible with uniform density in each layer. The effects
of the density difference between the two layers is ignored except when multiplied by the
earth’s gravitational acceleration. The prognostic equations for the horizontal components
of momentum are written in transport form while the continuity equation is the prognostic
equation for the layer-depth of the upper, active layer. A spherical coordinate system is used
and the eflects of the earth’s rotation are included. For further details of these equations in

analytic form, see Hurlburt and Thompson [2]. This ocean model will be referred to as the
NOARL model.

The outer domain used is a rectangle. The wind forcing is analytic and drives a double
gyre in the ocean model. This choice permits the placement of the inner domain to isolate
various types of flow: normal or tangential to the open boundary, strong or weak, or flow
which changes along the open boundary either spatially or temporally (for time-varying
forcing). The work presented here has only one open boundary, either on the western or
northern boundary of the inner domain, and the other three boundaries are closed, matching
the outer domain.

The NOARL ocean model uses a staggered grid to increase the computational accuracy.
If solid walls (closed boundaries) are used, then the eastward velocity, «, and the northward
velocity, v are set to zero along the solid walls. It follows that the eastward transport, U,
and the northward transport, V, must be zero also on the solid walls. For solid walls, no
boundary condition for the layer depth, h, is required. needed. If a boundary is open,
then initial conditions for all five variables u, v, U, V, and h must be specified to obtain
a numerical solution. However, arbitrary specification of these five variables on the open
boundary will in general overspecify the solution. In general and in this research, if the
inner domain open boundary values are supplied directly from the outer domain with no
modification or adjustments, the inner domain model will eventually “blow up”, much less
give the correct solution.

If the open boundary condition cannot be specified exactly, then the goal is to prevent
reflections at the open boundary which quickly destroy the interior solutions. Most nesting
work uses some combination of four basic techniques (Koch and McQueen [3]): blending,
filtering, damping, and radiation. Damping refers to an increase in the coefficient of eddy
viscosity near the open boundary. Filtering, which is used in many numerical models without
open boundaries, is the replacement of a calculated value at a given gridpoint with a weighted
combination of the calculated value and the surrounding values. Blending is the replacement
of the calculated prognostic term near the boundary of the inner grid with a combination of
the prognostic term from the inner grid and that from the outer grid. The radiation technique
(Sommerfeld [5] and Orlanski [4]) calculates the boundary values, assuming a wave is passing
through the boundary. The first three techniques tend to destroy the small scale structure
of the inner grid parameters which defeats the main purpose of running the inner grid with
increased horizontal resolution. The radiation technique tends to let the waves pass out but
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is limited by the problem of calculating the phase speed needed. The question arises as to
how the phase speed should be calculated if there are several types of waves present.

The goal of this research is to produce a nesting technique which does not destroy the
inner grid solution or reduce any improvements made in the solution by using the finer grid.
Therefore, no blending nor any additional damping or filtering has been used on the inner
domain. The radiation technique has been modified from that used by Sommerfeld [5] and
Orlanski [4]. The wave equation is used, not with an inner grid variable, but with a new
variable that is the difference between the inner domain and the outer domain variable, i.e.,
Q(inner) — Q(outer). The actual open boundary condition used on the open boundary is
the sum of the outer domain solution and the ¢ found from the wave equation:

0q/0t + cOq/0n = 0,

where c is the phase speed and n is the direction normal to the boundary. The phase speed
used is determined from the mean outflow and the inflow phase speed is set to zero. The
mass exchange along the boundary is the same for the inner and outer domams o

The quahty of the nesting techmque is measured by how well the inner doma.m solutlon
(thc nested run) compares with the true run (with the outer domain) solution. This difference
is compared to the difference between the true outer domain solution and the applied outer
domain solution. The first tests were done with stcady forcing and nearly normal outflow.
For these cases the differences between the true and nested solution after a year are less than
five percent of the differences between the true and the applied solutions everywhere except
for a very small area near part of the open boundary where the values go up to 20%. This
small portion of the open boundary is where both the non-normal flow is the largest and
the normal flow reverses sign. Note that this region is confined close to the boundary and
does not propagate into the interior of the inner domain. Model runs have been extended
for five years. Although the differences between true and applied runs increase with time,
the differences between the {rue and nested runs increase much more slowly. Therefore, the
percentages cited above actually decrease with longer model runs.

Ongoing research includes testing open boundaries with non-normal flow, strong jets,

and reversal of flow with time. Also, the nesting technique is being tested with actual 6cean
models with irregular coastlines included. Specifically, a tropical Pacific Ocean model has
been nested into a Northern Pacific Basin Model for testing. :

The results to date include: : -
‘s Open boundary conditions that can handle both inflow and outflow grid points.
o Phase speed selection is not crucial for regime tested.

o Horizontal interpolation is more critical than temporal interpolation.
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e Five-year nested model runs have been completed.

e Strong tangential flows require both modified A and non-normal treatment of phase
speed.

o Differences in variable values between frue and nested runs are, in general, less than
5% of those between true and applied runs.
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Abstract
This paper details the ongoing work of combining three existing software programs
into a nested grid oceanography model. The HYPER domain decomposition program
(8], the SPEM ocean modeling program [5] and a Quasi-Geostrophy model written in
England are being combined into a general ocean modeling facility. This facility will :
be used to test the viability and the capability of two-way nested grids in the North
Atlantic.

1 Introductlon s

We are begmnlng work on a basin wide coarse gnd overlald thh ﬁner gnds that follow
major mesoscale and dynamic features in the North Atlantic basin. The grid management
will be handled by the HYPER domain decomposition program [8]. We will consider several
combinations of solution methods to be used mcludmg nesting a prlmltlve equatlon fine mesh
solution method within another primitive equalion coarser grid solution, and a primitive
equatxon fine mesh solutlon within a coarser quasi- gcostrophlg model solutlon 7,7

Tt is well known that to reﬁne the entxi'c éoarse mesh in space for ocea. cu‘culatlon
momg ‘would be inefficient; it would require large amounts of memory and waste processor
time in quasi-geostrophic regions. In short, refining the entire coarse mesh is overkill. For
explicit time-evolution solution methods of primitive equations the advancement must also

be severely refined in time to account for the gravity wave staBﬂlty constraint. Thls results
in an excessive number of time steps. Alternatively, an 1mph01t solution on a fully refined

mesh results in a very large matrix problem. " -

We are attacking two areas of fundamental ocean modehng directly. The efﬁcxency of
the boundary conditions between quasi-geostrophic and primitive equation models should be
advanced based on the insight acquired from our hierarchical approach to the nesting exper-
iments. The second fundamental area is ocean modeling in general. Nested basin/regional
grids are a new concept for ocean applications, and in this respect oceanographic modeling
Tags behind atmospheric and acrodynamic modeling. But the success of domain decomposi-
tion in these more advanced modeling areas provides encouragement that our research efforts
are timely, central and wdl directed towards new, successful applications.

2 The Navier-Stokes Equations on a Rotating Sphere

To examine the Navier-Stokes equations on a rotating sphere in a rotating reference frame
R, let I denote an inertial reference frame, and let 7 be a radius of that sphere. Then

(r)le = (r)lm F R xr

TN
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where r, = u is velocity and the second term on the right-hand side of the equation is the
motion a non-rotating observer would see because of the rotation of the sphere. Then

(ur)elr = (wR)elr + 2@ x up 4+ Q@ x (2 x7) + Qe X 7.

On the right-hand side of this equation the second term is the Coriolis acceleration, the third
term is the centripetal acceleration, and the fourth term is the acceleration resulting from
any changes in the rotation speed.

For geophysical applications here on Earth this last acceleration term is discarded except
for very long time scales, and centripetal acceleration can be expressed as a potential,

Ax (2 xr)=-VO,,

that then can be added to the gravitational force potential to net a new geophysical force
potential.

The total or material derivative of a scalar quantity is the same in both reference frames.
Hence the form of the conservation of mass and the thermodynamic equations remains the
same.

To estimate the frictional forces F', we could assume a Newtonian fluid with a symmetric
Navier-Stokes internal pressure tensor. But this molecular dissipative strength would have
an unknown relationship to the dissipative strength of a given mesoscale ocean phenom-
ena. In general, a qualitative description of the transfer of energy and momentum between
scales of interest, and not these smaller molecular scales, are parameterized based on known
qualitative ocean behavior.

3 Governing Equations

Coupling hydrodynamics and thermodynamics, consider an adiabatic, inviscid fluid. It can
be described by conservation of momentum, a continuity equation, and an energy equation
coupled with an equation of state. That is,

-(%U+QVP+F:0

;i—t—a—av-u::o
Pt PyVou=0
dt V=

where u € R? is the velocity, a is the specific volunie, P is the pressure, and v is the ratio
of specific heats. Here F is the Coriolis and gravity forces, and % = —% +u -V is the total
time derivative.
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3.1 Primitive Equations

The hydrostatic approximation neglects vertical acceleration in the vertical equation of mo-
tion;
oP  —g
9
The Boussinesq approximation replaces density with a zeroth order mean density ev-
erywhere except where multiplied by gravity. The combined hydrostatic and Boussinesq
approximations are used to formulate a set of reduced equations known as the primitive
equations.
These equatlons are as follows:

d
i +aVyP+{ IF'p=0

aap+,“¢0
9z 97
d

—a—aV- .-u=10

dt

d
—P =
7 + PyV.-u=0
where uy = (w1, u2)", u = (ug,w),, Vg = (a%,o% t

3.2 Geostrophyz | o s

Geostrophy, or geopotentlal ﬂow, retains only the balance between the Coriolis force and the

potential field. Geostrophy:
fv=gns
fu= 9y

is the first approxxmatlon in an asymptotlc expansmn of the prlmltlve equatlons Here '17 is
the variation of the sea surface height, a measure of pressure.

3.3 Quasi-Geostrophy

Large-scale ocean movement is typically quasi-geostrophic. Asymptotically, quasi-geostrophic
motion has time scales not smaller than the advective time scale. It is geostrophic to low-
est order, yet retains dynamics. Velocity fields can change, but they do so in continuous
geostrophic balance with pressure. Hence there are temporal derivatives retained. The
quasi-geostrophic equations are ' o

~fv=—gn
‘ Ve i’fu = =97y
me+ (uH), + (o), = 0.
Here H + 7 is the mean height, H, plus the variation of thickness 7.
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4 Related Research ' :

Spall and Holland in unpublished work nested a primitive equation model within a quasi-
geostrophic model. They found that the quasi-geostrophic boundary conditions seriously
dampened the primitive equation physics close to the boundary, reducing them to essentially
quasi-geostrophic physics in the boundary region. Reducing or eliminating this boundary
layer is the principle focus of our current efforts.

Thompson and Schmitz [7] varied the damping time scale on outflow boundary conditions
for a model of the gulf stream. They found that the outflow dynamics and hence the location
of the Gulf stream are significantly impacted by the outflow boundary conditions. With
such strong impact, the possibility of numerical artifacts in regional models due to boundary
conditions seems large. The lack of existence of well-posed boundary conditions for primative
equations complicates this problem because no comparisons with true boundary conditions
can be made even as approximations [7]. See the article by Dr. Blake in this proceedings for
more detailed information.

This leads to the importance of getting the boundary conditions physically correct. It is
known that the subcharacteristics of the Euler equations, upon which the primitive equations
are based, can have combined inflow and outflow characteristics at both advective inflow and
outflow boundaries, dependent on the sound speed. Hence the dynamics of the refined regions
typically has an affect on the surrounding flow ficlds. Using one-way boundary conditions
for inflow and one-way for outflow is not, in general, sufficient. There must be a stronger
interaction between the dynamics of the coarse and the refined meshes.

To strengthen the interaction Spall and Holland [9] added a direct, but averaged, insertion
of the streamfunction field (generated using the refined primitive equation depth-averaged
horizontal velocity values on the refined mesh) onto the coarser quasi-geostrophic solution.
They allow the refined mesh to dictate the regional external flow component.

Our hypothesis is that the external flow is insufficient. The strong dynamics in the gulf
stream are forced by internal instabilities. We are currently testing both baroclinic and
barotropic nudging for all prognostic variables to establish a stronger relationship between
the regional dynamics and the coarse mesh solution behavior. This will be done while
maintaining Spall and Hollands quasi-geostrophic to primitive equation boundary conditions
[9], which are barotropic, to see if we can improve upon their results. If we are successful,
we will experiment with a quasi-geostrophic coarse mesh solution and try to find more
comprehensive two-way communication techniques that reduce or eliminate the boundary
layer formation found in the previous work.

We are currently using the barotropic modon defined in [9], and a baroclinic vortex
problem.

We are working with flat topography at first, so that we can combine either fixed or
sigma (stretched) vertical coordinate models.
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5 Initial Boundary Value Problems

For modeling purposes these equations must, of course, be viewed as initial boundary-value
problems (IBVP). Computational models use IBVP for hindcasts, nowcasts, and forecasts
as well as for physical studies that examine phenomena of interest such as energy cascades,
eddy shedding, and coastal upwelling. There are two prevalent boundary conditions used in
ocean models: rigid walls and open boundary conditions. The trick, of course, is to find open
boundary conditions that are well posed and yet not overconstrained. Because one cannot
simultaneously diagonalize the coefficient matrices for the multidimensional advective terms
of the Navier-Stokes equations, this is often a time-consuming guessing game.
To define open boundary conditions in general, define a system of equations

Lu=F

with given initial conditions
u(z : & = 0) = ue(x)

and characteristic boundary conditions
' w' = Su? 4 g 7

where u = (u!,u?)* are the prognostic variables, and S is a generalized reflection operator
But for reduced equations there can also be modeling constraints such as hydrostatic
balance or incompressibility. The modeling consiraints assumed in order to reduce the
equations (that is, the asymptotic balances chosen) must be enforced on the initial conditions
and the boundary conditions to avoid introducing inappropriate length and time scales.

Many obvious well-posed boundary conditions are overspecified, which leads to the for-
mation of boundary layers within which the solution adjusts to the additional information.

5.1 Open Boundary Condltlons : '_ o B

The maJor issue to address is boundary condltxons Ohger and Sundstrom in [4] detail some
boundary treatment for geophysical problems, and show that point-wise local bounda.ry con-
ditions for the primitive equations are not well-posed: the regional open boundary problem

is open-ended. It is not known, however, whether non-local boundary conditions, such as .

those generated with a domain decomposition method where boundary conditions that are
derived from a larger domain are or arc not well-posed. We may have fewer problems with

open boundary conditions at a two-sided boundary. The quasi- geostrop}uc boundary layer . -

within the nested primitive equation model in the unpublished work of Spall and Holland
indicate that open boundary conditions on a nested grxd is a major problem that must be
addressed before two-way nesting will be successful. e et wmEe e s

Our approach has been to work from the prnumve equatxon homogeneous model back-
wards to the quasi-geostrophic model, assessing the differences in the information transmit-
ted across boundaries, to derive better open boundary conditions for the simplier quasi-

geostrophic model.
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For the heterogencous boundary conditions between the primitive equation and quasi-
geostrophic regions the quasi-geostrophic boundaries need to evolve as if there was primitive
equatlon physics in the region surrounding the refined domain. To insure this we are moni-
toring 22 77 on the boundary, where quasi-geostrophic physics, which is less vertically diverse, is
statically stable, and comparing the evolving quasi-geostrophic boundary against a fine mesh
primitive equation global solution. This is one of our measures of error that is physically

based.

6 HYPER

The HYPER program, described in Perkins [5], looks at domain decomposition as a tool to
combine grids for computational efficiency and for model flexibility. It currently can locate
where refined grids should be placed based on asymptotic and-or physical criteria and it
initializes the refined grids using local uniforin mesh refinement.

Our current work is a static domain decomposition; we are running experiments on the
influence of the internal boundaries on the flow pattern, and are interested in the flow through
that boundary. These results are currently being prepared and will appear in a later report.

The goal is to follow different asymptotic regimes within the ocean basin that are iden-
tifiable as distinct physical regions of the ocean. The problem is that, once you’re inside
a reduced physics region, such as a quasi-geostrophic region where there is no ageostrophic
flow, there may be no way for the model to evolve the complete physics you hope to recover
by using the refined meshes. For example, in the gulf stream region meanders pinch off to
form eddies. Many aspects of the physics contribute to this pinching off. In such cases the
reduced quasi-geostrophic model will not reproduce the ageostrophic behavior in the initial
conditions of the refined mesh, and hence will miss some of the time dependent interac-
tions that contribute to the dynamically significant event of ring shedding. There will be no
ageostrophic signals in the initial conditions to interpolate onto the refined mesh. In such a
situation, the data used to help initialize the model may make up for some of the missing
physics, but the time scales may be off. .

7 Domain Decomposition

Domain decomposition allows the mesh to evolve with the solution. It has been applied to
elliptic and hyperbolic equations for several years. The interested reader can refer to Chan,
et al., [2] for an extensive bibliography on elliptic and hyperbolic domain decomposition
methods.

Formally we describe the domain decomposition of a discrete coarse mesh, Q!, on the
computational mesh Q, for a fixed time ¢ = nAt, by letting (p(t) — 1) be the number of
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refined subdomains used at time ¢ and {Q"}Z(:tg2 be those subdomains:

p(t)
U 94 c Q.
k=1

After the domain is decomposed, local uniform spatial mesh refinement, as developed by
Berger [1], is applied to the new subdomains. The time step may also be refined on these
regions.

The sequencing for one coarse timne step of magnitude A.¢ from time £* to time " + At,
where n indexes the discrete time steps on the coarse mesh, is presented next. Let the
temporal refinement ratio from the coarse mesh to the refined meshes be r, and notate this
rAst = Act, so that a subscript “c” informs us that we are on the coarse mesh, and a

subscript “f” informs us that we are discussing one of the refined meshes. The domain
decomposition algorithm follows:

Domain Decomposition Algorithxg

Advance coarse mesh - -
Mark points with significant mesoscale and ageostrophic potential
Cluster these points into refined meshes
DO r times

Solve equations on refined meshes
ENDDO - ) )
Nudge refined values onto coarse mesh

When all of the refined meshes have been advanced r gﬁnedglmestepsto thehext coarse
time step, their values at time t"*! are passed to the coarse mesh where a nudging technique

modifies the coarse advanced values and produces an aggregate solution on the coarse mesh,
Let F4, F', and {F"}Z(:t; represent the discrete operators for the aggregate solution on the
original discretized mesh ©2', the solution on the coarse mesh !, and the separate solutions
on each of the refined subdomains {Q¥}2%") respectively. Then the aggregate solution on the

coarse discretized mesh is given by '

FAQY) = C [{FHQY1Y, F ()] IREN(AY

where the operator C is a nudging technique that may vary betweenexperlments

We use domain decomposition as a tool to combine the explicit coarse mesh solution
method with the refined mesh solution methods to satisfy our varying numerical requirements
in a computationally efficient way. We use a two-level refinement scheme consisting of one
coarse mesh and a set of overlaid refined meshes, where the coarse mesh adequately represents
quasi-geostrophic behavior, while the refined meshes adequately resolves the more physically
complete primitive equations.
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Refined to coarse mesh communication (feedback) can take the form of value averaging,
as in Berger [1] and as in Spall and Holland [6].

We are using a nudging data assimilation technique for the initial experiment and we do
not include explicit conservation enforcement.

Our domain decomposition work focuses on two-way interactive nested grid communi-
cations and the development of good internal boundary conditions. We are particularly
interested in examining heterogeneous open boundary conditions between different dsymp-
totic regions. Because the major geophysical equations are not known to be well-posed as
an initial value boundary problem, in general, this issue becomes important. ‘

8 Initial Conditions

Ovur long range plans are to build a basin wide grid, and overlay it with refined grids about
regions of ageostrophic dynamic regions. The refined grids will then follow mesoscale or
planetary scale dynamical features.

But our current work is much less ambitious. We have constructed a box model and are
using Spall and Hollands [12] barotropic modon and baroclinic vortex problems to examine
the viability and desirability of different communication schemes between the coarse and
refined meshes.

A barotropic modon is a coherent, concentric streamfunction. The barotropic flow is the
primary mode of a quasi-geostrophic equation formulated as a Sturm-Liouville problem (all
other modes of the Sturm-Liouville problem are referred to as baroclinic). It has an analytic
solution, it is quasi-geostrophic, and uses an infinite beta plane approximation. The result
is a coherent depth independent (barotropic) structure that moves at constant speed.

The baroclinic vortex has no analytic solution, and is defined using a Gaussian pressure
distribution with maximum geostrophic velocity of 100cm/sec. The initial velocity fields are
calculated to be in geostrophic balance with the prescribed Gaussian pressure field.

Our experiment follows a hierarchical approach. Beginning with a homogeneous domain
decomposition we use a f{ull, coarse primitive equation model and keep track of the flow
across the “future” internal boundaries. Then we introduce the nested grid into the same
problem and analyze any changes in the boundary information flow. This is used as our
error due to boundary conditions only. This error is measured both in root mean squared
error and in phase error. Small shifts of mesoscale features are not always bad compared to
changes in dynamics within those mesoscale features.

Once we complete our homogeneous studies we will move to a heterogeneous domain
decomposition with a quasi-geostrophic coarse grid overlaid with a primitive equation refined
grid. Again we will compare the flow across the internal boundaries. Then we will add a
feedback loop that uses the nudging data assimilation technique from the refined mesh to
the coarse mesh and nudge to the true boundary information. This way we can measure the
improvement due to the nudging feedback loop.

The quasi-geostrophic coarser model will be forced by the nudging from the refined prim-
itive equation model. The unforced quasi-geostrophic model is statically stability, but the
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primitive equation is not. The forced behavior perturbs the reduced equation dynamics, so
that a time series of its behavior in the refined region will not be statically stablhty due
to the feedback interaction. But with known density changes at the boundaries from our
true solution, we can measure how well the reduced dynamics are being influenced by the
regional models with their more complete physical models. Another metric is the apparent
ageostrophic time series behavior in the quasi-geostrophic coarser model. After nudging,

the ageostrophic adjustment to the quasi-geostrophic coarse mesh is calculated, and a time

series of this difference is the ageostrophic forcing of the quasi-geostrophic model. Where
this difference is small, there is no need to maintain a refined mesh, so this metric can be
used to eliminate refined meshes that are no longer needed, but it can not help us locate
where refined meshes should be placed.

8.1 Semi-Spectral Primitive Equation Model (SPEM)

The primitive equation SPEM model of Haidvogel et. al. [3] has prognostic variables for
horizontal velocity, » and v, and temperature £, and salinity s. It uses the hydrostatic and
Boussinesq approximation. The resulting equations are advanced on an scattered Arakawa
“C” grid in the horizontal, while the vertical is spectral, with Chebyshev modes. It has a
rigid lid approximation at the surface (no variations or “waves” in sea surface height).

9 Current Summary

The computational demands of fully three-dimensional global ocean modeling seem to re-
quire a nested heterogeneous adaptive grid solution. However, the implementation difficulties

are robust. The need for physically realistic open boundary conditions is é,lreé,dy well doc-"

umented, mostly a result of a “grand challenge” issued several years ago. Our experience
indicates that an equally pressing need is to provide modeling-consistent asymptotically
nested initial conditions for each new nested grid.

The scientific aspects of the work are focused on the boundary condition formulation and
on the two-way grid communication mechanisms under development, '
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1 Introduction

The activity in research of domain decomposition for the numerical solution of partial dif-
ferential equations is increasing at a rapid pace. One motivation for domain decomposition
is the isolation of physical phenomenae into separate subdomains. The numerical treatment
(and possibly even the modeling equations) may be different in these subdomains. Thus,
this style of domain decomposition is hclerogencous.

This bibliography includes references to works central to the development of heteroge-
neous domain decomposition.

The bibliography is by no means complete. Indeed, we would be delighted to receive
additional references to add to the bibliography.

2 Adding to this Bibliography

We would like additional references that are core to the topic of heterogeneous domain
decomposition. Please use the following guidclines:

Format ' Bibliographic data shog;d be in bibtex format. A set of
keywords is requested as part of the format. These keywords
will be used to form the index portion of this database.

Medium Email messages to Louise Perkins or Jeff Scroggs.
Assistance To assist with placing the data in bibtex format, send a
request to either of us for the C program BIBINPUT. This

program will interactively prompt you for the data, and
produce a file with the formatted entries.
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Disclaimer We are trying to keep this bibliography focused, hence
submissions that do not obviously deal with heterogeneous
domain decomposition will be eliminated.

Please send your references to

Louise Perkins

54-1420

MIT

Cambridge, MA 02139

(617)253-1291

perkins@pimms.mit.edu '

or *

Jeffrey S. Scroggs

Box 8205

Department of Mathematics

North Carolina State University

(919)737-7817

scroggs@matjfs.ncsu.edu
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